способ регенерации растений клевера лугового при генетической трансформации

Классы МПК:A01H4/00 Разведение растений из тканевых культур
A01H5/00 Цветковые, например покрытосеменные растения
A01G7/00 Ботаника, общие вопросы
Автор(ы):, , ,
Патентообладатель(и):ГНУ "Всероссийский научно-исследовательский институт кормов им. В.Р. Вильямса" (RU)
Приоритеты:
подача заявки:
2005-06-09
публикация патента:

Изобретение относится к области сельского хозяйства и может быть использовано в селекции растений для направленного создания исходного материала клевера лугового. Проводят культивирование трансформированной морфогенной культуры клевера на питательной среде Гамборга В5 с добавлением канамицина и цефотаксима, причем морфогенную культуру получают без образования дедифференцированной ткани путем культивирования гипокотиля на питательной среде Гамборга В5 с 4,0 мг/л 6-бензиламинопурина, 1,0 мг/л кинетина и 0,05 мг/л способ регенерации растений клевера лугового при генетической   трансформации, патент № 2305931 -нафтилуксусной кислоты с дальнейшей пересадкой эксплантов на свежую среду того же состава с 2,0 мг/л 6-бензиламинопурина, а эпикотильную часть проростков сохраняют путем культивирования на среде Гамборга В5 без гормонов или путем микроразмножения на среде того же состава с добавлением 2 мг/л 6-бензиламинопурина. Изобретение позволяет провести прямую регенерацию клевера лугового с сохранением морфогенетического потенциала и ценных селекционных признаков исходных генотипов 2 з.п. ф-лы, 1ил., 2 табл.

способ регенерации растений клевера лугового при генетической   трансформации, патент № 2305931

Формула изобретения

1. Способ регенерации растений клевера лугового при генетической трансформации, включающий культивирование трансформированной морфогенной культуры клевера на питательной среде Гамборга В 5 с добавлением канамицина и цефотаксима, причем морфогенную культуру получают без образования дедифференцированной ткани путем культивирования гипокотиля на питательной среде Гамборга В5 с 4,0 мг/л 6-бензиламинопурина, 1,0 мг/л кинетина и 0,05 мг/л способ регенерации растений клевера лугового при генетической   трансформации, патент № 2305931 -нафтилуксусной кислоты с дальнейшей пересадкой эксплантов на свежую среду того же состава с 2,0 мг/л 6-бензиламинопурина, а эпикотильную часть проростков сохраняют путем культивирования на среде Гамборга В5 без гормонов или путем микроразмножения на среде того же состава с добавлением 2 мг/л 6-бензиламинопурина.

2. Способ по п.1, отличающийся тем, что морфогенные культуры в процессе генетической трансформации сохраняют способность к регенерации растений и ризогенезу до 24-го пассажа и более на питательной среде Гамборга B 5 с 50 мг/л канамицина.

3. Способ по п.1, характеризующийся тем, что полученные из гипокотильных эксплантов морфогенные культуры по генетическим и морфологическим признакам не отличаются от исходных генотипов.

Описание изобретения к патенту

Изобретение относится к области сельского хозяйства и может быть использовано в селекции растений для направленного создания исходного селекционного материала клевера лугового с заданными признаками методами генетической трансформации, в исследованиях по физиологии, фитопатологии и генетике растений.

В литературе имеются сведения о регенерации растений клевера лугового в культуре тканей in vitro. Регенерацию растений осуществляли из каллусной ткани, образующейся на поверхностях разрезов листовых эксплантов (1).

К недостаткам данного способа можно отнести следующее. В этих экспериментах для получения морфогенных культур использовали каллусную ткань, индуцированную из листовых эксплантов на питательной среде Гамборга В5 с высоким содержанием фитогормонов (6 мг/л 2,4-дихлорфеноксиуксусной кислоты (2.4-Д) и 8 мг/л кинетина). Растения-регенеранты клевера лугового, полученные из морфогенных культур одной и той же клеточной линии (клеточные культуры, полученные из каллусной ткани одного экспланта) вышеназванным способом, различались между собой по ряду морфологических и физиолого-биохимических признаков. При этом морфогенные культуры к 5-8 пассажу теряли свою регенерационную способность.

Известен способ регенерации растений клевера лугового в процессе генетической трансформации с использованием разобщенных доминирующих центров (2). В соответствии с этим способом регенерацию растений осуществляют посредством получения дедифференцированной ткани (каллуса) на поверхностях разрезанных на две части (в середине гипокотиля) 7-10-дневных асептических проростков. Для индукции каллусогенеза в среду Гамборга B5 добавляют 2 мг/л 2.4-Д и 0,2 мг/л кинетина. Индукцию морфогенеза из каллусов осуществляют, заменяя вышеназванные гормоны бензила минопурином (БАП) в концентрации 0,2 мг/л.

Недостатком данного способа является то, что полученная таким образом морфогенная ткань и растения-регенеранты клевера лугового отличались высокой гетерогенностью и, как следствие, большой сомаклональной изменчивостью по ряду морфологических и физиологических признаков как в положительную, так и отрицательную сторону по сравнению с исходным генотипом. Кроме того, в связи с тем, что для получения каллусов используют как гипокотильную, так и эпикотильную части проростков, исходный генотип не сохраняется и становится невозможным контролировать сомаклональную изменчивость и в дальнейшем проводить полноценный сравнительный морфологический и цитологический анализ полученных в процессе генетической трансформации растений. В связи с этим данный способ регенерации растений оказался не пригоден для направленного создания методом генетической трансформации форм клевера лугового с одним из признаков (устойчивость к болезням, вредителям и т.д.) и сохраняющих при этом все ценные селекционные признаки исходного материала.

Цель изобретения - разработка способа прямой регенерации растений клевера лугового, сохраняющих высокий морфогенетический потенциал и ценные селекционные признаки исходных генотипов при длительном культивировании на канамицинсодержащих питательных средах в процессе генетической трансформации.

В предлагаемом способе поставленная цель достигается тем, что культивирование трансформированной морфогенной культуры клевера на питательной среде Гамборга В5 осуществляется с добавлением канамицина и цефотаксима, причем морфогенную культуру получают без образования дедифференцированной ткани путем культивирования гипокотиля на питательной среде Гамборга B5 с 4,0 мг/л 6-бензиламинопурина, 1,0 мг/л кинетина и 0,05 мг/л способ регенерации растений клевера лугового при генетической   трансформации, патент № 2305931 -нафтилуксусной кислоты с дальнейшей пересадкой эксплантов на свежую среду того же состава с 2,0 мг/л 6-бензиламинопурина, а эпикотильную часть проростков сохраняют путем культивирования на среде Гамборга B5 без гормонов или путем микроразмножения на среде того же состава с добавлением 2 мг/л 6-бензиламинопурина. Морфогенные культуры в процессе генетической трансформации сохраняют способность к регенерации растений и ризогенезу до 24-го пассажа и более на питательной среде Гамборга В5 с 50 мг/л канамицина. Полученные из гипокотильных эксплантов морфогенные культуры по генетическим и морфологическим признакам не отличаются от исходных генотипов.

Способ осуществляется следующим образом: из сортообразцов клевера лугового проводили отбор генотипов с высокой регенерационной способностью. Для этого из семян клевера с ценными селекционными признаками получали 6-7-дневные асептические проростки. Эпикотили отделяли и культивировали in vitro для сохранения исходного растения на среде Гамборга B5 без гормонов или для микроразмножения на среде того же состава с 2 мг/л 6-бензиламинопурина (БАП). Гипокотили помещали на питательную среду Гамборга B 5 с 4,0 мг/л БАП, 1 мг/л кинетина и 0,05 мг/л способ регенерации растений клевера лугового при генетической   трансформации, патент № 2305931 -нафтилуксусной кислоты (НУК). Формирующиеся на срезе гипокотиля без дедифференцировки всего экспланта (т.е. без образования каллуса) меристематические очаги с почками и побегами пересаживали на свежую среду того же состава с 0,05 мг/л НУК для укоренения побегов или с 2,0 мг/л БАП для создания и поддержания в культуре in vitro морфогенных культур с высокой регенерационной способностью. Выращенные из эпикотилей исходные растения и растения-регенеранты высаживали в почву и изучали по цитогенетическим и морфологическим признакам. Полученные из гипокотильных эксплантов морфогенные культуры в процессе генетической трансформации с помощью различных штаммов агробактерий, несущих конструкции с маркерным (канамицинустойчивость) и целевым генами, субкультивировали на среде Гамборга B 5 с цефотаксимом (для элиминации агробактерий) через каждые 3-4 недели. Канамицин в концентрации 50 мг/л добавляли в среды в продолжение всего процесса трансформации и поддержания in vitro коллекции трансформированных морфогенных культур и побегов клевера лугового.

Пример 1.

Оценка регенерационной способности различных линий клевера лугового после длительного культивирования на среде с канамицином (24 пассаж).

Для генетической трансформации использовали только генотипы клевера лугового с высокой регенерационной способностью. Для чего морфогенные культуры с небольшими побегами, разрезанные на части величиной 3-5 мм, помещали срезом вверх на среду Гамборга В5 с 2,0 мг/л БАП, инокулировали штаммами агробактерий, несущих различные конструкции с маркерным (канамицинустойчивость) и целевым генами. Через 5 суток морфогенные культуры переносили на свежую питательную среду того же состава с добавлением 50 мг/л канамицина (для отбора клеточных культур клевера с встроенными генами канамицинустойчивости) и 500 мг/л цефотаксима для подавления роста бактерии. Субкультивирование на средах с цефотаксимом проводили через каждые 3-4 недели до полной элиминации агробактерий. Канамицин добавляли в среды в продолжение всего процесса трансформации и поддержания in vitro коллекции трансформированных морфогенных культур клевера лугового.

На чертеже представлены результаты изучения регенерационной способности пяти генотипов клевера лугового сорта Ранний-2 (15П, Р8, К7 11-1, К7 11-2, РП-150) с ценными селекционными признаками (кислотоустойчивость, раннеспелость, высокая семенная продуктивность и т.д.), инокулированных шестью штаммами Agrobacterium tumefaciens и A.rhizogenes с конструкциями A4/pK22rs, A4/pK22ac, LBA 4404/pK22rs, LBA 4404/рК22ас, LGV 3850/pK22rs, LGV 3850/рК22ас. Через 24 пассажа на питательной среде Гамборга B5 без цефотаксима с 50 мг/л канамицина морфогенные культуры клевера лугового сохраняли способность к активной пролиферации, массовому образованию зеленых побегов и корней. В течение одного пассажа (1 месяц) из морфогенной ткани с одной чашки Петри получали в среднем более 100 зеленых побегов, и общее число их составляло 1000 и более штук и ограничивалось только потребностями практической селекции и площадью в фитотроне.

Пример 2.

Сравнительное изучение цитогенетических (табл.1) характеристик исходных растений и растений-регенерантов клевера лугового, полученных из каллусных культур и методом прямой регенерации из гипокотилей.

Из таблицы 1 видно, что количество хромосомных и хроматидных перестроек в клетках растений-регенерантов клевера лугового сорта Ранний-2 клеточной линии РП 150, полученных методом прямой регенерации из гипокотилей, по всем показателям достоверно не отличались от контроля (исходные растения с ценными селекционными признаками), тогда как в варианте РП 116 число хроматидных перестроек с фрагментами и мостами в процентах возросло с 3,4±0,81 до 6,0±0,93 и 0,2±0,19 до 0,76±0,34 соответственно, а общий процент аберраций составил 8,15±1,07 против 3,8±0,85 в контроле. Кроме того, о значительных нарушениях в хромосомном аппарате клеток в процессе регенерации из каллусной культуры свидетельствовало появление хромосомных мостов (0,3±0,21), существенное снижение митотического индекса (Mi) до 4,6±0,66 и достоверное уменьшение числа диплоидных клеток (2n=14) с 98,0±0,99 до 91,0±2,02.

Пример 3.

Сравнительная оценка морфологических признаков растений исходных генотипов и растений-регенерантов, полученных методом прямой регенерации.

Как следует из представленных результатов (табл.2), морфологические и биологические характеристики регенерантов полностью соответствуют исходным генотипам. По всем показателям представленных в таблице 2 признаков растения, полученные методом прямой регенерации, не отличаются от исходного генотипа и, при этом, разброс их характеристик укладывается в 5% ошибку опыта и соответствует величине вариации данных признаков у растений исходного сорта Ранний-2. Это свидетельствует об отсутствии сомаклональной вариабельности у растений-регенерантов РП 150 и их полной идентичности исходному генотипу.

Таким образом, предлагаемый способ регенерации позволяет в процессе генетической трансформации на основе одного и того же генотипа, используя конструкции, несущие различные целевые гены, направленно создавать целый ряд генетических аналогов, полностью сохраняя при этом без изменения все ценные признаки исходного образца клевера лугового; получать и поддерживать in vitro морфогенные культуры, способные к длительной пролиферации на селективных средах и массовой регенерации канами-цинустойчивых растений клевера лугового; контролировать сомаклональную изменчивость и проводить сравнительный генетический анализ полученных в процессе генетической трансформации селекционных номеров.

Источники информации

1. А.В.Мезенцев. Способ размножения клевера красного in vitro. / Авторское свидетельство СССР №781035, 1978.

2. В.В.Мазин, С.И.Ивашута, М.Н.Агафодорова, Л.А.Солодкая. Система разобщенных доминирующих центров для генетической трансформации люцерны и клевера // Физиология растений. - 1994. - Т.41. - №6, с.762-766.

Таблица 1
Цитогенетическая характеристика растений исходного генотипа и растений-регенерантов клевера лугового, полученных из каллусных культур и методом прямой регенерации
ВариантПроанализировано анафаз Число клеток, норма (2п=14) M dif±md MiХроматидные перестройки Хромосомные перестройки Аберрации
Фрагменты Мосты ФрагментыМосты Число%
Число%Число %Число% Число%
Контроль 50098,0±0,99 -7,9±0,85 173,4±0,811 0,2±0,191 0,2±0,1900 193,8±0,85
РП150500 96,0±1,381,2±1,28 7,5±0,83214,2±0,89 20,4±0,28 20,4±0,280 025 5,0±0,97
РП116 65091,0±2,02 4,71±1,014,6±0,66 396,0±0,935 0,76±0,347 1,07±0,4020,3±0,21 538,15±1,07
РП150 - растения-регенеранты, полученные методом прямой регенерации (сорт Ранний 2)
РП116 - растения-регенеранты, полученные из каллусной ткани (сорт Ранний2)

Таблица 2.
Сравнительная оценка исходных генотипов и растений-регенерантов, полученных методом прямой регенерации
ПризнакИсходный сорт Ранний 2 Исходный генотип РП 150Растения-регенеранты РП 150
Фертильность пыльцы, % 90-9797,3 96,3-97,4
Количество цветков, шт. / головку70-160150 149-152
Количество соцветий, шт. / растение60-130 110108-120
Масса 1000 семян, г1,6-2,2 1,81,7-1,9
Облиственность, %55,6 55,855,4-56,8
Длина стебля, см60-70 65,264,9-66,0
Число стеблей на 1 растение, шт.11-22 1413,0-15,0
Толщина стебля, мм3-4 43,9-4,0
Количество междоузлий на главном стебле, шт. 8-108 8,9-9,0
Масса вегетативной части растений, г80-250 196189-207

Класс A01H4/00 Разведение растений из тканевых культур

способ регенерации микропобегов hyssopus officinalis l. в условиях in vitro -  патент 2529837 (27.09.2014)
способ получения лапчатки белой (potentilla alba) -  патент 2525676 (20.08.2014)
способ получения форм картофеля in vitro, устойчивых к возбудителям фитофтороза и альтернариоза -  патент 2524424 (27.07.2014)
способ размножения цимбидиума in vitro -  патент 2523604 (20.07.2014)
способ микроклонального размножения подвоев яблони -  патент 2523305 (20.07.2014)
способ длительного хранения in vitro растений осины -  патент 2522823 (20.07.2014)
способ микрочеренкования винограда in vitro -  патент 2521992 (10.07.2014)
способ получения растений-регенерантов земляники (in vitro) -  патент 2516341 (20.05.2014)
способ микроклонального размножения ольхи черной in vitro -  патент 2515385 (10.05.2014)
способ введения в культуру клеток льна многолетнего -  патент 2506741 (20.02.2014)

Класс A01H5/00 Цветковые, например покрытосеменные растения

новая мутация, вовлеченная в повышенную толерантность растений к имидазолиноновым гербицидам -  патент 2525933 (20.08.2014)
способ получения форм картофеля in vitro, устойчивых к возбудителям фитофтороза и альтернариоза -  патент 2524424 (27.07.2014)
растения с измененным ростом и/или развитием и способ их создания -  патент 2522480 (20.07.2014)
ячмень с низким содержанием гордеинов -  патент 2518241 (10.06.2014)
трансгенные растения -  патент 2515927 (20.05.2014)
гены и способы обеспечения устойчивости к фитофторозу пасленовых -  патент 2511423 (10.04.2014)
новое соединение, содержащееся в голубой розе -  патент 2507206 (20.02.2014)
растения, имеющие усиленные признаки, связанные с урожайностью, и способ их получения -  патент 2503721 (10.01.2014)
масло, семена и растения подсолнечника с модифицированным распределением жирных кислот в молекуле триацилглицерина -  патент 2502793 (27.12.2013)
гибридный инсектицидный белок, молекула нуклеиновой кислоты, кодирующая такой белок, трансгенные растения и их семена, содержащие такой белок, способ получения белка и его применение -  патент 2497830 (10.11.2013)

Класс A01G7/00 Ботаника, общие вопросы

способ подкормки растений, выращиваемых в защищенном грунте -  патент 2527065 (27.08.2014)
способ выращивания эхинацеи пурпурной в защищенном грунте -  патент 2524085 (27.07.2014)
устройство для магнитно-импульсной обработки растений -  патент 2523162 (20.07.2014)
способ обработки садовых деревьев и винограда для защиты от низких температур и весенних заморозков -  патент 2522522 (20.07.2014)
способ повышения продуктивности яровых одно- и многокомпонентных фитоценозов -  патент 2520683 (27.06.2014)
способ определения потерь массы корнеплодов от механических повреждений -  патент 2520129 (20.06.2014)
способ определения поражения селями горной долины -  патент 2519807 (20.06.2014)
способ фитоиндикации с обеспечением благоприятной обстановки на склоновых землях -  патент 2519716 (20.06.2014)
способ обогащения йодом плодов и ягод -  патент 2519231 (10.06.2014)
способ определения поражения горной долины лавинообразным потоком -  патент 2518447 (10.06.2014)
Наверх