способ подачи смазочно-охлаждающих технологических средств, реализующих эффект избирательного переноса

Классы МПК:B23Q11/10 средства для охлаждения или смазки режущих инструментов или обрабатываемых изделий (встроенные в инструменты, см в соответствующих подклассах, к которым отнесены инструменты)
Автор(ы):, , ,
Патентообладатель(и):Ивановский государственный университет (RU)
Приоритеты:
подача заявки:
2005-03-21
публикация патента:

Предложен способ подачи смазочно-охлаждающих технологических средств (СОТС), реализующих эффект избирательного переноса в зоне контактирования инструментального и обрабатываемого материалов при металлообработке, включающий использование пропитанного магниточувствительными веществами графита. Магниточувствительные вещества имеют медную оболочку и служат для осуществления направленного перемещения СОТС. При этом образованный медно-графитовый комплекс подается в контактную зону либо как индивидуальное СОТС, либо в качестве компонента СОТС посредством жидкого или газообразного носителя. Обеспечивается повышение износостойкости режущих инструментов. 2 табл.

Формула изобретения

Способ подачи смазочно-охлаждающих технологических средств (СОТС) при механической обработке металлов, включающий направленное перемещение СОТС, содержащих пропитанный магниточувствительными веществами графит, в контактную зону, отличающийся тем, что пропитанный магниточувствительными веществами графит подают в контактную зону либо как индивидуальное СОТС в количестве 0,5-50 г/ч, либо в качестве компонента СОТС в концентрации 5-20 мас.% посредством жидкого или газообразного носителя, причем магниточувствительные вещества присутствуют в графите в количестве 0,5-15,0% от веса графита и покрыты медной оболочкой толщиной до 20 нм.

Описание изобретения к патенту

Изобретение относится к машиностроению, а именно к механической обработке металлов, в частности к способам подачи смазочно-охлаждающих технологических средств (СОТС) и их компонентов.

Известный способ подачи медьсодержащей СОТС в зону резания представляет собой применение медненого графита с размером частиц 100-200 мкм, который в качестве компонента добавляется в консистентную СОТС, предварительно наносимую на обрабатываемую поверхность детали или режущий инструмент [1].

Основными недостатками такого способа являются большой расход СОТС в результате его разбрызгивания вращающимися деталью или инструментом, значительные размеры частиц медненого графита, что затрудняет их доступ в контактную зону.

Известен способ реализации эффекта безызносности при трении путем формирования на трущихся поверхностях медьсодержащих слоев из технологической смазочной композиции состава: присадка МКФ-18, представляющей собой 50%-ный раствор медьсодержащего продукта в индустриальном масле И20А, - 0,3%, масло индустриальное И-20А - остальное [2].

Основной недостаток данного способа - затруднительность применения при обработке металлов резанием в результате длительного времени формирования медьсодержащего слоя на контактирующих поверхностях для реализации эффекта безызносности (100-200 ч [2]).

Наиболее близким по технической сущности является способ подачи СОТС и их компонентов в виде магнитовосприимчивой смазочной композиции, в которой для придания компонентам СОТС направленного движения к контактной зоне используются ферромагнитные жидкости [3].

Однако в данном способе не предусмотрена возможность использования медьсодержащего компонента для реализации эффекта избирательного переноса. Кроме того ферромагнитные жидкости имеют высокую стоимость, что значительно удорожает их применение в качестве компонента СОТС.

Техническим результатом данного изобретения является повышение износостойкости режущих инструментов путем разработки способа направленной подачи СОТС в контактную зону, имеющего в своем составе медьсодержащий компонент для реализации эффекта избирательного переноса и безызносного трения.

Технический результат достигается тем, что медь предварительно наносится на поверхность магниточувствительного вещества с размерами частиц 10-15 нм, в виде тонкой пленки толщиной до 20 нм, например на магнетит Fe3O4 , который используется для получения ферромагнитных жидкостей. Осаждение меди на поверхности магнетита может осуществляться любым из известных физических или химических способов, например по [4]. Суспензией медненого магнетита в дистиллированной воде пропитывают мелкодисперсный графит, размеры частиц которого составляют от 0,1 до 40-50 мкм, в количестве 0,5-15,0% от веса графита. Толщина оболочки более 20 нм приводит к чрезмерному утяжелению магниточувствительных частиц, что уменьшает их количество в графите и, как следствие, приводит к нарушению оптимальной концентрации медно-графитового комплекса в контактной зоне. Полученный медно-графитовый комплекс может использоваться как индивидуальное СОТС в количестве от 0,5 до 50 г/ч, так и в качестве компонента СОТС в концентрации 5-20 мас. %. Количество используемого медно-графитового комплекса может изменяться в зависимости от вида операции механической обработки, обрабатываемого материала, условий процесса резания. При этом верхний предел (50 г/ч или 20 мас. %) является условной величиной, т.к. превышение концентрации медно-графитового комплекса более указанных величин практически не приводило к заметному увеличению стойкостных показателей инструментов по сравнению с теми значениями, которые были зафиксированы при расходе по максимально указанным значениям.

Подача его в контактную зону осуществляется посредством жидкого или газообразного носителя, который может представлять собой и активированное вещество (например, ионизированный газовый поток).

Магниточувствительное вещество под действием специально наведенных или естественно возникающих в процессах трения и резания магнитных полей способствует направленному перемещению частичек графита и других компонентов СОТС (в случае многокомпонентной системы) непосредственно в контактную зону. Графит инициирует смазочное действие как твердое смазочное вещество, а медная оболочка магниточувствительных компонентов, взаимодействуя в зоне контакта с химически активными металлическими поверхностями, образует интерметаллидные соединения и усиливает смазочное действие эффектом избирательного переноса.

Апробация предлагаемого способа осуществлялась при лезвийной обработке представителей различных групп конструкционных материалов:

углеродистая сталь 45, хромистая сталь 40Х, нержавеющая аустенитная сталь 12Х18Н10Т, жаропрочный сплав ВЖ-98, титановые сплавы ВТ6, ВТ5-1. Резание проводилось на операциях точения и фрезерования инструментами, изготовленными из быстрорежущих сталей Р6М5, Р9 и оснащенных пластинками твердого сплава Т5К10, Т15К6, ВК6.

Пример предлагаемого способа

В качестве магниточувствительного вещества использовался магнетит Fe3O4 с размерами частиц 10-15 нм. Формирование медной оболочки толщиной 8-12 нм осуществлялось по [4].

При точении титанового сплава ВТ6 ГОСТ 19807-74, ОСТ 1.90173-75 упорнопроходными резцами из быстрорежущей стали Р6М5 при глубине резания t=0,5 мм, подаче S=0,1 мм/об и скорости резания V=0,46 м/с использовалась однокомпонентная СОТС, состоящая из медно-графитовых комплексов, подаваемая в контактную зону посредством ионизированного воздушного потока в количестве 3-50 г/ч. За критерий износостойкости принимался износ по задней поверхности резцов при фаске износа 0,6 мм.

Результаты изменения стойкостных характеристик инструментов приведены в табл.1, 2.

Таблица 1
Результаты стойкостных испытаний быстрорежущих резцов при точении стали 45
№ п/п Используемая СОТССтойкость резцов, мин
Базовый объект
1Использовалась 20%-ная смазочная композиция, изготовленная по способу [3] описания 12
Предлагаемый способ
2Медно-графитовый комплекс, содержащий 7% медненого магнетита, подавался в контактную зону ионизированным воздушным потоком из расчета 25 г/ч 28
Граничные значения
3Количество медно-графитового комплекса, с содержанием медненого магнетита 7%, составляло 0,5 г/ч13
4 Количество медно-графитового комплекса, с содержанием медненого магнетита 7%, составляло 50 г/ч 28
Запредельные значения
5Количество медно-графитового комплекса, с содержанием медненого магнетита 7%, составляло 0,2 г/ч10
6 Количество медно-графитового комплекса, с содержанием медненого магнетита 7%, составляло 55 г/ч 29
Таблица 2
Результаты стойкостных испытаний быстрорежущих резцов при точении сплава ВТ6 в зависимости от толщины медных пленок на магнетите
№ п/пИспользуемая СОТС Стойкость резцов, мин
Базовый объект
1 Использовалась 20%-ная смазочная композиция, изготовленная по способу [3] описания26
Предлагаемый способ
2 Медно-графитовый комплекс, содержащий 7%

медненого магнетита, подавался в контактную зону ионизированным воздушным потоком из расчета 25 г/ч при толщине медных пленок, сформированных на магнетите, 10 нм
43
Граничные значения
3 Пленка наносилась фрагментами с толщиной 0,5-1,0 нм 26
4Толщина медной пленки составляла 19-20 нм35
Запредельные значения
5Пленка не наносилась 22
6 Толщина медной пленки составляла 22-23 нм 25

Соотношение полученных результатов лезвийной обработки для различных операций других обрабатываемых и инструментальных материалов, а также применение многокомпонентных СОТС с использованием в качестве одного из компонентов медно-графитового комплекса близки к приведенным в таблицах 1, 2.

Литература

1. А.с. СССР №1531465,С10М.

2. Гаркунов Д.Н. Триботехника. Износ и безызносность. М.: Изд-во МСХА. 2001, 616 с.

3. Патент РФ №2215776, С10М.

4. Юдина Т.О., Омельченко В.Я., Кузьмин Л.Л. Способ химического меднения порошкообразных материалов. // Рук. деп. в ВИНИТИ 11.04.77, №1357-77. - М.

Класс B23Q11/10 средства для охлаждения или смазки режущих инструментов или обрабатываемых изделий (встроенные в инструменты, см в соответствующих подклассах, к которым отнесены инструменты)

способ оценки эффективности смазочно-охлаждающей жидкости (сож), используемой при резании материала -  патент 2528294 (10.09.2014)
подвод охлаждающего воздуха к моторной цепной пиле -  патент 2527553 (10.09.2014)
способ подачи смазочно-охлаждающих технологических средств -  патент 2524877 (10.08.2014)
способ охлаждения и смазки режущих инструментов -  патент 2524871 (10.08.2014)
режущий инструмент (варианты) -  патент 2524512 (27.07.2014)
косвенное охлаждение вращающегося режущего инструмента -  патент 2522401 (10.07.2014)
система и способ удаления материала, система для образования пены и устройство для преобразования пены в жидкость -  патент 2520815 (27.06.2014)
устройство для подачи смазочно-охлаждающей жидкости при безабразивной ультразвуковой финишной обработке -  патент 2490106 (20.08.2013)
устройство охлаждения режущего инструмента -  патент 2470757 (27.12.2012)
металлорежущая система для эффективной подачи охлаждающей текучей среды -  патент 2445189 (20.03.2012)
Наверх