твердотельный детектор ионизирующих излучений
Классы МПК: | H01L31/115 приборы, чувствительные к волнам очень короткой длины, например рентгеновскому излучению, гамма-излучению или корпускулярному излучению G01T1/24 с помощью полупроводниковых детекторов |
Автор(ы): | Горбацевич Александр Алексеевич (RU), Егоркин Владимир Ильич (RU), Ильичев Эдуард Анатольевич (RU), Кацоев Валерий Витальевич (RU), Кацоев Леонид Витальевич (RU), Полторацкий Эдуард Алексеевич (RU), Ревенко Валерий Григорьевич (RU), Шмелев Сергей Сергеевич (RU) |
Патентообладатель(и): | Общество с ограниченной ответственностью "Гамма" (RU) |
Приоритеты: |
подача заявки:
2006-04-24 публикация патента:
27.09.2007 |
Детектор ионизирующих излучений содержит арсенидгаллиевую подложку с контактом, граничащий с ней полуизолирующий арсенидгаллиевый слой и омический контакт. Кроме того, детектор содержит изолирующий слой Ga1-xAlxAs, имеющий общую границу с полуизолирующим арсенидгаллиевым слоем, нелегированный слой арсенида галлия, имеющий общую границу с изолирующим слоем Ga1-xAl xAs, легированный слой арсенида галлия n-типа проводимости, имеющий общую границу с нелегированным GaAs слоем с выполненными на нем дополнительными омическим и барьерным контактами. Все эти слои совместно с упомянутым выше омическим контактом образуют полевой транзистор, содержащий область p-типа проводимости, сформированную в легированном и нелегированном арсенидгаллиевых слоях и изолирующем GaAlAs слое, и высокоомную область, расположенную по периферии упомянутого транзистора. Детектор такой конструкции обладает высокой пороговой чувствительностью, низким уровнем шума и высоким энергетическим разрешением и обеспечивает возможность детектирования слабых ионизационных потоков. 1 ил.
Формула изобретения
Твердотельный детектор ионизирующих излучений, содержащий арсенидгаллиевую подложку с контактом, граничащий с ней полуизолирующий арсенидгаллиевый слой и омический контакт, отличающийся тем, что введены изолирующий слой Ga1-xAl xAs, имеющий общую границу с полуизолирующим арсенидгаллиевым слоем, нелегированный слой арсенида галлия, имеющий общую границу с изолирующим слоем Ga1-xAl xAs, легированный слой арсенида галлия n-типа проводимости, имеющий общую границу с нелегированным GaAs слоем, с выполненными на нем дополнительными омическим и барьерным контактами, которые совместно с упомянутым выше омическим контактом образуют полевой транзистор, область p-типа проводимости, сформированная в легированном и нелегированном арсенидгаллиевых слоях и изолирующем GaAlAs слое, и высокоомная область, расположенная по периферии упомянутого транзистора.
Описание изобретения к патенту
Изобретение относится к твердотельным детекторам ионизирующих излучений.
Твердотельные детекторы ионизирующих излучений являются элементной базой диагностических систем атомных предприятий, геологоразведки, экологического мониторинга окружающей среды и медицинской техники.
Известны детекторы ионизирующих излучений, принцип действия которых основан на ионизации рабочего газа и пропорциональном преобразовании энергии кванта (частицы) в ток упомянутых ионов [1].
Основным достоинством таких детекторов является высокая стойкость к дозовым радиационным нагрузкам. К их недостаткам относится неудовлетворительное пространственное разрешение, что препятствует их использованию в системах позиционирования пучка и распознавания плоских изображений.
Известен также кремниевый твердотельный детектор барьерного типа [2]. Он позволяет существенно повысить пространственное разрешение детектора, что позволяет активно использовать такие детекторы для задач, связанных с позиционированием пучка, с медицинской диагностикой и для целей дефектоскопии.
Однако Si детекторам свойственен и ряд существенных недостатков. Так, в твердотельных кремниевых детекторах области преобразования энергии кванта (частицы) в неравновесные электронно-дырочные пары и последующего считывания носителей в виде тока во внешнюю цепь пространственно совмещены, что приводит к разрушению информативного заряда при его считывании во внешнюю цепь. Кроме того, к недостаткам кремниевых твердотельных детекторов относится также низкая стойкость к дозовым радиационным нагрузкам. Последний из недостатков можно преодолеть посредством использования детекторов на основе альтернативных твердотельных материалов, например резистивных либо барьерных детекторов на основе арсенида галлия [3].
В качестве прототипа настоящего изобретения предлагается резистивный или барьерный детектор на основе высокоомного арсенида галлия [3]. Детектор-прототип представляет собой арсенидгаллиевую подложку с контактом и граничащий с ней полуизолирующий (функционально-приемный) слой из арсенида галлия с омическим или барьерным контактом к нему. В детекторе-прототипе области преобразования энергии кванта (частицы) в неравновесные электронно-дырочные пары и последующего считывания носителей в виде тока во внешнюю цепь пространственно совмещены. В силу этого в такой конструкции [3], как и в конструкции аналога [2], считывание заряда во внешнюю цепь приводит к потере информационного сигнала, а регистрируемые пороговые величины ионизирующих излучений, энергетическое разрешение и энергетические шумы определяются не только фоновыми ("темновыми") токами, но и тепловыми и генерационно-рекомбинационными шумами, чрезвычайно значительными при считывании токов, протекающих в компенсированных глубокими энергетическими центрами высокоомных материалах.
Целью настоящего изобретения является разработка детектора с высокой пороговой чувствительностью, низким уровнем шума и высоким энергетическим разрешением. Достигается указанная цель посредством конструкции, позволяющей накапливать заряд и неразрушающим образом считывать его в процессе накопления.
Для этого в твердотельный арсенидгаллиевый детектор-прототип, содержащий подложку с контактом к ней и граничащий с ней полуизолирующий арсенидгаллиевый слой с омическим контактом, введены изолирующий слой Ga1-xAl xAs, имеющий общую границу с упомянутым полуизолирующим арсенидгаллиевым слоем, нелегированный арсенидгаллиевый слой, имеющий общую границу с изолирующим слоем Ga1-x AlxAs, легированный слой арсенида галлия n-типа проводимости, имеющий общую границу с нелегированным арсенидгаллиевым слоем, а упомянутый омический контакт и дополнительные омический и барьерный контакты расположены на легированном арсенидгаллиевом слое, так что образуют с ним полевой транзистор; кроме того, в легированном слое арсенида галлия n-типа проводимости, нелегированном GaAs и изолирующем слое арсенида галлия - арсенида алюминия, вплоть до полуизолирующего арсенидгаллиевого слоя, выполнена локальная область p-типа проводимости.
Достижение положительного эффекта (возможность сохранения и накопления информационного заряда и неразрушающего считывания информации о нем) обеспечивается тем, что область, в которой осуществляются преобразование энергии ионизирующего излучения в неравновесные электронно-дырочные пары, последующее удаление дырок и накопление неравновесного заряда электронов на ловушках полуизолирующего слоя, отделена посредством монокристаллического изолирующего слоя твердого раствора арсенида галлия - арсенида алюминия от области считывания информации о заряде, который считывают в виде тока, протекающего в канале упомянутого выше полевого транзистора.
Предложенная конструкция прибора позволяет существенно повысить пороговую чувствительность, так как устраняет при считывании вклады тепловой и дробовой компонент шума, свойственные резистивным детекторам на основе высокоомного компенсированного материала, реализуя считывание информации о заряде по существенно менее шумящему каналу в эпитаксиальном слое.
Предлагаемая конструкция позволяет детектировать плоские изображения в потоках частиц либо ионизирующих излучений, реализует режимы накопления, считывания и уничтожения информационного заряда на ловушках полуизолирующего GaAs слоя.
В представленной на чертеже конструкции заявляемый детектор содержит:
1 - арсенидгаллиевую подложку с контактом к ней;
2 - полуизолирующий GaAs слой, имеющий общую границу с подложкой;
3 - изолирующий монокристаллический GaAlAs слой, имеющий общую границу с полуизолирующим слоем 2;
4 - нелегированный GaAs слой, имеющий общую границу с изолирующим слоем 3;
5 - легированный слой GaAs n-типа проводимости, имеющий общую границу с нелегированным слоем 4;
6, 7 - два омических контакта, расположенных на легированном слое 5;
8 - барьерный контакт, расположенный на легированном слое 5;
9 - барьерный контакт в виде области р-типа проводимости;
10 - высокоомная область, расположенная по периферии транзистора.
Слой 2 указанной конструкции функционально является приемопреобразующим слоем, т.е. областью, в которой и происходят процессы преобразования энергии квантов излучения либо высокоэнергетических частиц в электронно-дырочные пары. Изолирующий монокристаллический GaAlAs слой 3 [5, 6] предназначен для осуществления гальванической развязки слоя 2 с эпитаксиальными GaAs слоями 4 (нелегированный GaAs слой) и 5 (GaAs слой n-типа проводимости). Легированный GaAs слой 5 со сформированными омическими (6 и 7) и барьерным (8) контактами образует полевой GaAs транзистор, функционально выполняющий роль считывателя информации. Барьерный контакт 9 в виде области p-типа проводимости предназначен для уничтожения (стирания) информативного заряда, а также для эвакуации неравновесных дырок в процессе регистрации и накопления заряда электронов. Высокоомная область 10, выполненная в слоях 4 и 5 посредством имплантации бора (например, с энергиями 40...60 кэВ и дозой 30 микрокулон), выполняет роль планарной изоляции приемной области кристалла сенсора (площадь, включающая транзистор) от пассивной части кристалла.
Работа детектора осуществляется следующим образом. Высокоэнергетические частицы либо гамма кванты взаимодействуют с ионами решетки объема слоя 2 по одному из известных механизмов, преобразуя энергию ионизирующего излучения в неравновесные электроны и дырки [7], с последующей локализацией неравновесных электронов на ловушках слоя 2. При этом на p+/n переход подается напряжение обратного смещения (минус на p+ области относительно слоя 2), так что неравновесные дырки эвакуируются из слоя 2. Локализованный на ловушках слоя 2 избыточный заряд электронов, величина которого пропорциональна потоку ионизирующего излучения, создает ОПЗ в слое 5 канала полевого транзистора, уменьшая протекающий по каналу транзистора ток. При этом в силу гальванической развязки слоев 4 и 5 и приемного слоя 2 исключается возможность спонтанной подзарядки ловушек пограничной области за счет тока "горячих" носителей канала транзистора, что позволяет считывать информацию о локализованном заряде (а значит о потоке ионизирующего излучения), не искажая информационный заряд. Разрядка слоя (ловушек слоя 2) осуществляется подачей на p+ электрод импульса (нестационарного) обратного смещения (минус) p+/n перехода, превышающего пороговое значение.
Толщина приемного слоя 2 зависит от вида и энергии регистрируемого излучения. Так при детектировании -частиц толщина его определяется радиационной длиной и для энергий 5 МэВ составит 30 мкм. При детектировании квантов рентгеновского диапазона (1...10 кэВ) толщина полуизолирующего GaAs слоя определяется сечением процесса взаимодействия квант - слой 2, что для детекторов на GaAs материалах составит уже 100...300 мкм.
Разделительный слой 3 из Ga 1-xAlxAs имеет электрическую прочность 106 В/см, так что с учетом величины ожидаемого потенциала от локализованных ловушек его толщина может находиться в пределах 0,15...0,30 мкм.
Функциональное назначение нелегированного слоя 4 - технологический буферный слой; он предназначен для снятия упругих напряжений границы раздела GaAlAs/GaAs, и его толщина может варьироваться в пределах 0,1...0,3 мкм. Мольная доля арсенида алюминия в твердом растворе этого слоя находится в диапазоне 0,15...0,35 [5, 6].
Толщина легированного GaAs слоя 5 варьируется совместно с изменениями концентрации легирующей примеси в диапазонах 0,2...0,6 мкм и 2.1017 см-3...2.1016 см -3 соответственно.
Размер локальной области, связанный с диффузным размывом изображения, в силу малости времени захвата (10-11 с) и незначительности градиента концентрации неравновесных носителей (для энергий детектируемых -частиц 5 МэВ он не превышает величины 10 6 шт/мкм) не превышает 1...2 мкм, что делает детектор актуальным для регистрации плоских изображений в потоках ионизирующих излучений. С учетом пространственного разнесения элемента считывания и области хранения заряда разрешение изображения в плоскости пластины будет зависеть от толщины приемного слоя 2, а значит будет варьироваться в зависимости от типа регистрируемого излучения и его энергетических характеристик.
Источники информации
1. Прайс В. // Регистрация ядерного излучения. Изд. "Издательство иностранной литературы", Москва, 1960.
2. Беллини Дж., Фоа А., Джоржи М. // Успехи физических наук. 1984, т.142. С.476-503.
3. J.C.Bourgoin, N. de Angelis, K.Smith, R.Bates, C.Whitehill, A.Meikle. // Nuclear Instruments and Methods in Physics Research A 458 (2001) 344-347 - прототип.
4. D.S.McGregor, S.M.Vernor, H.K.Gersch, S.M.Markham, S.J.Wojtczuk, D.K.Wehe. // IEEE Transactions on nuclear science, v.47, n.4, p.1365-1370.
5. Ильичев Э.А., Маслобоев Ю.П., Полторацкий Э.А., Родионов А.В., Слепнев Ю.В. // Авт. Свид. №1119523, приоритет от 28.03.83 г., выдано 13.06.84 г.
6. Афанасьев А.А., Ильичев Э.А., Полторацкий Э.А., Слепнев Ю.В., Родионов А.В. // ФТП, 1985, т.20, в.9, с.1565-1571.
7. В.Б.Берестецкий, Е.М.Лившиц, Л.П.Питаевский. // Релятивистская квантовая теория, ч.1. Изд. "Наука", Москва, 1968.
Класс H01L31/115 приборы, чувствительные к волнам очень короткой длины, например рентгеновскому излучению, гамма-излучению или корпускулярному излучению
Класс G01T1/24 с помощью полупроводниковых детекторов