короткие углеродные нанотрубки

Классы МПК:C01B31/02 получение углерода
B01J19/08 способы с использованием непосредственного применения электрической или волновой энергии или облучения частицами; устройства для этого
B01J20/20 содержащие свободный углерод; содержащие углерод, полученный процессами коксования
B01J21/18 углерод
B82B3/00 Изготовление или обработка наноструктур
Автор(ы):
Патентообладатель(и):РОССЕТЕР ХОЛДИНГС ЛТД (CY)
Приоритеты:
подача заявки:
2002-09-30
публикация патента:

Изобретение может быть использовано в электронной промышленности и при изготовлении материалов для хранения водорода. Короткие многостенные углеродные нанотрубки (к-МСНТ) образованы из концентрически расположенных слоев нанотрубок и имеют средний диаметр от 2 до 15 нм, медианный диаметр от 6 до 8 нм и естественную длину от 100 до 500 нм. Они могут состоять из 2-15 коаксиальных слоев одностенных нанотрубок. Каждая из коротких МСНТ имеет один полусферический конец и один конический конец, причем полусферический конец может быть избирательно открыт путем окисления, оставляя конический конец нетронутым. Короткие МСНТ по изобретению в виде порошкового образца способны к полевой эмиссии электронов, начиная с примерно 2 В/мкм. Полученные короткие МСНТ более однородны по длине и диаметру и обладают улучшенными эмиссионными свойствами по сравнению с известными. 4 з.п. ф-лы, 6 ил. короткие углеродные нанотрубки, патент № 2309118

(56) (продолжение):

CLASS="b560m"high yield by mixed catalyst, Appl. Phys. Lett., 1994, v.64, №16, p.p.2087-2089.

короткие углеродные нанотрубки, патент № 2309118 короткие углеродные нанотрубки, патент № 2309118 короткие углеродные нанотрубки, патент № 2309118 короткие углеродные нанотрубки, патент № 2309118 короткие углеродные нанотрубки, патент № 2309118 короткие углеродные нанотрубки, патент № 2309118 короткие углеродные нанотрубки, патент № 2309118 короткие углеродные нанотрубки, патент № 2309118

Формула изобретения

1. Короткие многостенные нанотрубки (МСНТ), образованные из концентрически расположенных слоев нанотрубок и имеющие средний диаметр от 2 до 15 нм, медианный диаметр от 6 до 8 нм и естественную длину от 100 до 500 нм.

2. Короткие МСНТ по п.1, состоящие из 2-15 коаксиальных слоев одностенных нанотрубок.

3. Короткие МСНТ по п.1, каждая из которых имеет один полусферический конец и один конический конец.

4. Короткие МСНТ по п.3, у которых полусферический конец может быть избирательно открыт путем окисления, оставляя конический конец нетронутым.

5. Короткие МСНТ по любому из пп.1-4, способные в виде порошкового образца к полевой эмиссии электронов, начиная с примерно 2 В/мкм.

Приоритет по пунктам:

19.03.2002 по п.1;

30.09.2002 по пп.2-4;

01.10.2001 по п.5.

Описание изобретения к патенту

Настоящее изобретение относится к производству новых аллотропных форм углерода, а именно углеродных нанотрубок.

Углеродные нанотрубки - это фуллереноподобные структуры, состоящие из цилиндров, закрытых с обоих концов крышками, содержащими кольца пентагонов. Нанотрубки были открыты в 1991 году Ииджимой [1] в материале, осаждаемом на катоде при дуговом испарении графитовых электродов. Теперь нанотрубки признаются имеющими свойства, необходимые для применения в электронной промышленности, в материаловедении и упрочнении, в исследованиях и при производстве энергии (например, для хранения водорода). Однако производство нанотрубок в коммерческих объемах до сих пор встречает трудности.

Методы получения нанотрубок, описанные в литературе, зависят от источников испарения углерода. Так, одностенные нанотрубки (ОСНТ), полученные лазерной абляцией [2] углеродных мишеней, смешанных с металлическими катализаторами (обычно Co и Ni), типично имеют структуру веревочного типа неопределенной длины и диаметры 1-1,4 нм. Поэтому для ряда применений требуется резать ОСНТ на более короткие (100-400 нм в длину) куски [3].

ОСНТ, полученные электрическим дуговым разрядом между графитовыми электродами, содержащими металлические катализаторы, такие как Ni и Y, имеют большие средние диаметры в 1,8 нм и неограниченные длины [4].

Сообщалось о том, что многостенные нанотрубки (МСНТ), обычно образованные несколькими концентрически расположенными нанотрубками в пределах одной структуры, имеют длины вплоть до 1 мм, хотя в типичном случае они характеризуются длинами от 1 до 10 микрометров и диаметрами от 2 до 20 нм [1]. Все методы, описанные в литературе к настоящему времени, сообщают о нанотрубках с такими размерами.

Мы нашли способ, который позволяет получать укороченные или, иначе говоря, более короткие нанотрубки (к-НТ), делая эти нанотрубки более пригодными для определенных применений.

Короткие нанотрубки настоящего изобретения имеют следующие размеры.

В соответствии с первым аспектом настоящего изобретения предложены короткие ОСНТ (к-ОСНТ), имеющие диаметры, распределенные в пределах 2-5 нм. Предпочтительно, к-ОСНТ имеют диаметры в пределах 2-3 нм.

Предпочтительно к-ОСНТ имеют длины в пределах от 0,1 до 1 микрон. Более предпочтительно короткие нанотрубки имеют длины в пределах от 0,1 до 0,5 мкм.

В результате к-ОСНТ настоящего изобретения много короче в длину, но шире в диаметре, чем обычные ОСНТ.

В соответствии со вторым аспектом настоящего изобретения предложены короткие многостенные нанотрубки (к-МСНТ), имеющие диаметр от 2 до 15 нм и длину между 50 и 1000 нм.

Предпочтительно к-МСНТ имеют медианное значение 60-80 ангстрем и длину в пределах 100-500 нм.

Предпочтительно к-МСНТ состоят из 2-15 слоев ОСНТ, обычно из 5 или 7 слоев ОСНТ.

Таким образом, к-МСНТ согласно настоящему изобретению много короче, чем прежде описанные в литературе.

Порошковые образцы к-МСНТ и к-ОСНТ демонстрируют относительно высокую эмиссию электронов при низких напряженностях электрического поля порядка 3-4 В/мкм. Электронная эмиссия начинается с примерно 2 В/мкм в образцах к-МСНТ.

Неожиданно мы обнаружили, что открытие одного конца наших новых нанотрубок осуществляется легче, чем у существующих обычных нанотрубок.

Дополнительно, закрывание (запечатывание) нанотрубок настоящего изобретения осуществляется легче, чем обычных нанотрубок.

Нанотрубки согласно настоящему изобретению могут быть получены с использованием способа, описанного в нашей совместно поданной заявке PCT/GB2002/004049.

Вкратце эта заявка описывает способ получения нанотрубок и наночастиц, включающий в себя:

a) обеспечение углеводородной жидкости в качестве эффективного источника углерода и

б) обеспечение ввода энергии так, что из указанной ароматической углеводородной жидкости получают «синтез»-газы, такие как ацетилен, этилен, метан или монооксид углерода.

Углеводородная жидкость действует в качестве среды для ввода энергии. Полученные ацетилен, этилен, метан или диоксид углерода эффективно трансформируются в короткие нанотрубки.

Предпочтительно ввод энергии может осуществляться:

электрическим дуговым разрядом; резистивным нагревом; лазером; электронным пучком или любым подходящим пучком излучения (лучом). Ввод энергии является ключевым в запуске и контролировании крекинга жидких углеводородов, обеспечивая условия для оптимального получения «синтез»-газов (ацетилена, этилена, метана или монооксида углерода), и, таким образом, для оптимального получения нанотрубок.

Углеводородной жидкостью, используемой для получения к-МСНТ согласно настоящему изобретению, может быть любая подходящая углеводородная жидкость или даже смесь различных жидкостей. Например, указанная жидкость может быть основана на циклогексане, бензоле, толуоле, ацетоне, паральдегиде и метаноле и др. или же может быть их смесью.

Предпочтительно используется источник постоянного тока.

По выбору углеводородная жидкость представляет собой ароматическую углеводородную жидкость.

Предпочтительно ароматическая углеводородная жидкость содержит чистую ароматику и смеси ароматических соединений с другими жидкими углеводородами, например, альдегидами, кетонами, спиртами, Co-Ni-нафтенатами, основанными на толуоловых или спиртовых растворах или растворах толуола с серой (которая считается промотором роста ОСНТ) и др.

Подходящее устройство для получения нанотрубок и наночастиц проиллюстрировано на Фиг. 5. Устройство содержит камеру, способную содержать жидкий реагент, используемый для получения нанотрубок и наночастиц, причем указанная камера содержит по меньшей мере один электрод первой полярности и по меньшей мере один электрод второй полярности, и указанные электроды первой и второй полярности расположены в непосредственной близости друг от друга, при этом к указанному первому электроду фиксированно прикреплен контактор.

Предпочтительно прикладываемое напряжение между первым и вторым электродами может быть напряжением постоянного или переменного тока.

Предпочтительно напряжение постоянного тока находится в интервале 10-65 В.

Предпочтительно действующее значение напряжения переменного тока находится в интервале 10-65 В.

Предпочтительно контактор выполняют из графита.

По выбору контактор выполняют из любого подходящего металла, включая алюминий, титан, молибден и вольфрам.

Предпочтительно указанный контактор является сферическим по форме.

По выбору указанный контактор является полусферическим по форме. По выбору указанный контактор может быть призматическим с треугольным или квадратным поперечным сечением, цилиндрическим или усеченным цилиндрическим или плоским.

Фиг. 1 - микрорамановский спектр к-ОСНТ. Цифры при пиках указывают диаметры в нанометрах к-ОСНТ;

Фиг. 2 - типичный ПЭМ снимок к-ОСНТ согласно настоящему изобретению;

Фиг. 3 - типичный ПЭМ снимок к-МСНТ согласно настоящему изобретению;

Фиг. 4 показывает электронную эмиссию из порошкового образца к-МСНТ: D=400 мкм, T=140 секунд, 1-е сканирование;

Фиг. 5 - схематическая иллюстрация устройства для получения фуллереновых углеродных нанотрубок и наночастиц согласно настоящему изобретению;

Фиг. 6a-c показывают типичные ПЭМ снимки осадков нанотрубок, полученных поверх анодов из Mo при 36 вольтах (В) в толуоловых смесях.

Пример 1. Получение к-НТ/наночастиц с использованием устройства согласно Фиг. 5

Устройство для получения фуллеренов, показанное на Фиг. 5, включает в себя герметизированную камеру 21, в которой помещены держатели 22 анодов 23 и держатель 24 катода 25, а сферические или полусферические графитовые контакторы 26 прикреплены к концам анодов снизу. Эта сборка погружена в углеводородную жидкость 27 и подсоединена к клапану 28 (для добавления буферного газа 29 в камеру 1 в область электродов) и к источнику 30 постоянного тока (например, к обычным автомобильным батареям).

Вольфрамовые или молибденовые цилиндрические стержни 23 (аноды) с диаметрами 1-4 мм установлены в отдельные держатели 31. Сферические или полусферические графитовые контакторы 26 установлены внутри вертикальных цилиндрических отверстий графитовой матрицы 25 (катод).

Фиг. 5 показывает конструкцию устройства с 6-ю анодами, вертикально установленными в компактной гексагональной упаковке.

При использовании корпус заполняют сверху углеводородной жидкостью вроде бензола, толуола, ацетона, циклогексана, паральдегида и т.п. или их смесями до уровня, по меньшей мере достаточного для покрытия анодов 23. Фильтры 32 Ватмана установлены вверху корпуса для поглощения сажевых частиц, выходящих из жидкости вместе с пузырьками выделяющихся газов.

Перед включением аппарата из корпуса откачивается воздух через выпускной клапан 33, и через клапан 28 к электродам прокачивается чистый аргон для заполнения пустого пространства над жидкостью до давления, оптимального для получения нанотрубок. Давление контролируется манометром 34. Верхняя 35 и нижняя 36 крышки сделаны из тефлона для обеспечения изоляции и возможности наблюдения за образованием дуги во время процесса. Вода, охлаждающая корпус (и жидкость), пропускается через ввод 37 на вывод 38. Резиновые сальники 39 герметизируют корпус.

В предпочтительном варианте воплощения молибденовые или вольфрамовые аноды (с диаметрами около 3-4 мм) подвешены внутри отверстий матрицы к верхней крышке корпуса. Графитовые (выполненные в виде сфер, и/или полусфер, и/или призм треугольного или квадратного поперечного сечения, цилиндров или усеченных цилиндров, плоских пластин и др.) или металлические (например, выполненные в виде титановой губки прямоугольной формы или алюминиевых цилиндров) контакторы 26 прикреплены к свободным концам анодов близко к поверхности отверстий матрицы (катода).

Такая геометрия дает две возможности для получения осадков нанотрубок.

Первая возможность представляет собой получение внутри отверстий, когда рост осадков (отложений) идет поверх анодов 23 снизу вверх по отверстию (см. Фиг. 5). Вторая возможность - это рост вне отверстий поверх анодов 23. В этом случае осадок может расти в двух направлениях: в бок и вверх (см. Фиг. 5), так что образуются осадки с большими поперечными сечениями и длинами, лимитированными лишь длиной анодов 23.

Обе возможности реализуются при помещении свободных концов анодов 23 внутрь отверстий матрицы. Если концы помещены близко к верху отверстий, то будет произведено лишь небольшое количество внутреннего осадка 40 (см. Фиг. 5). Указанные внутренний 40 и внешний 41 осадки могут быть легко отделены друг от друга. Нами найдено, что «внутренний» осадок, полученный в бензоле или толуоле (равно как и в любой другой подходящей ароматической жидкости), начинает расти при напряжении около 18 или 19 В. Наилучшее напряжение для получения к-МСНТ составляет в пределах 24-36 В и дает выходы осадка соответственно 1,2-1,8 г/мин.

Можно видеть, что увеличение напряжения до уровня выше, чем 36 В, значительно снижает выход к-МСНТ. Нами найдены лишь следы к-МСНТ для напряжений 60 В, при этом большинство материала в ПЭМ снимках выглядит состоящим из нанолуковиц, сажи, графитовых частиц и «кудрявого» углерода.

Обычно мы использовали один анод для роста наноуглеродных осадков в устройстве согласно Фиг. 5. Внутренние 40 и внешние 41 осадки были получены в смеси толуола и ацетона при использовании одного W-го анода (3 мм в диаметре). Полусфера графитового контактора (диаметр около 12 мм) была прикреплена к свободному концу анодного стержня и помещена наверху отверстия графитовой матрицы (катода) для начала дугового разряда при приложении напряжения постоянного тока 30 В. В начале разряда электрический ток составлял приблизительно от 40 до 60 А (производя «внутренний» осадок с выходом около 0,7 г/мин), затем в пределах 20-50 А с получением «внешнего» осадка (с примерно тем же выходом 0,5 г/мин). Оба осадка легко отделялись от электродов и друг от друга.

Внутренний 40 и внешний 41 осадки (в том виде, как они произведены) содержат 20-40 мас.% к-МСНТ, полиэдральные частицы, графит, «кудрявые» и аморфные формы наноуглерода и металлы (0,5-5 мас.%).

Внешний осадок в количестве около 30 грамм за 12 мин (с выходом 2,5 г/мин) был получен с Mo-м анодом (2 стержня с диаметрами 2,5 мм и длиной около 10 см), погруженным в смесь толуола с Co- и Ni-нафтенатами (на основе толуола). Концентрация элементов Co и Ni в указанной смеси была около 3 мас.%. Полусфера графитового контактора (диаметр около 12 мм), импрегнированного оксидами Co и Ni (по 3 мас.% по каждому из металлов), была прикреплена к свободному концу анодного стержня и помещена наверху отверстия графитовой матрицы (катода) для начала дугового разряда при приложении напряжения постоянного тока 36 В.

В начале разряда электрический ток был в пределах 20-30 А (производя маленький «внутренний» осадок), а затем варьировался в пределах 6-60 А (средний ток около 25 А), производя огромный «внешний» осадок 41.

ПЭМ снимки (см. Фиг. 6a-c) осадка подтверждают эти данные. Фиг. 6a показывает к-МСНТ и «кудрявые» наноуглероды по всей показанной площади. Более детальный взгляд на кластеры к-ОСНТ обнаруживает длины и диаметры к-ОСНТ в пределах 0,1-1 мкм и 2-5 нм соответственно.

ПЭМ высокого разрешения (Фиг. 6b) показывает, что обычно к-МНТ имеют один полусферический и один конический конец. Окисление на воздухе при температурах вплоть до 600°C в течение 1-1,5 часов позволяет открывать все полусферические концы к-МСНТ независимо от числа слоев в к-МСНТ, оставляя конические концы нетронутыми (закрытыми) (см. Фиг. 6c).

Пример 2. Получение коротких одностенных нанотрубок (к-ОНТ)

Для получения к-ОСНТ, как описано выше, устройство согласно Фиг. 5 и способ, описанный в примере 1, были использованы с применением стержня из молибдена диаметром 3 мм и смесей толуола/Co/Ni-нафтенатов (для к-ОСНТ) в качестве углеводородных жидкостей. Напряжение постоянного тока около 24 В (3 пары обычных автомобильных батарей, соединенных параллельно) было приложено для обеспечения тока 20-40 А. Узкий углеродный осадок (около 15 г) был выращен поверх молибденового стержня за примерно 15 мин. Осадок в основном состоял из форм «кудрявого» наноуглерода, включающих в себя короткие нановолокна (к-НВ) (с длинами менее 1 микрона) и к-ОСНТ (около 1 мас.%).

Источники информации

1. S. Iijima, Helical Microtubules of graphitic carbon. Nature V.345, p.56-58, 1991.

2. Andreas Thess et al., Science, 273, 483-487 (July 26, 1996).

3. A.C. Dillon et al., Carbon Nanotube Materials for hydrogen storage. Proceedings of the 2000 DOE/NREL Hydrogen Program Review NREL/CP-570-28890, May 8-10, 2000.

4. Liu et al., "Hydrogen Storage in Single Walled Carbon Nanotubes at Room Temperature", Science, Vol.286, page 1127, 1999.

Класс C01B31/02 получение углерода

электродная масса для самообжигающихся электродов ферросплавных печей -  патент 2529235 (27.09.2014)
способ модифицирования углеродных нанотрубок -  патент 2528985 (20.09.2014)
свч плазменный конвертор -  патент 2522636 (20.07.2014)
пористые угреродные композиционные материалы и способ их получения, а также адсорбенты, косметические средства, средства очистки и композиционные фотокаталитические материалы, содержащие их -  патент 2521384 (27.06.2014)
полимерный нанокомпозит с управляемой анизотропией углеродных нанотрубок и способ его получения -  патент 2520435 (27.06.2014)
способ получения углерод-металлического материала каталитическим пиролизом этанола -  патент 2516548 (20.05.2014)
способ получения углеродных наноматериалов с нанесённым диоксидом кремния -  патент 2516409 (20.05.2014)
тонкодисперсная органическая суспензия углеродных металлсодержащих наноструктур и способ ее изготовления -  патент 2515858 (20.05.2014)
способ получения сажи, содержащей фуллерены и нанотрубки, и устройство для его осуществления -  патент 2511384 (10.04.2014)
способ заполнения внутренней полости нанотрубок химическим веществом -  патент 2511218 (10.04.2014)

Класс B01J19/08 способы с использованием непосредственного применения электрической или волновой энергии или облучения частицами; устройства для этого

способ и устройство для использования смесительных элементов в системах уф-обеззараживания сточных вод/оборотной воды -  патент 2515315 (10.05.2014)
способ и устройство для плазмохимической очистки газов от органических загрязнений -  патент 2508933 (10.03.2014)
способ продления ресурса графитового ядерного канального реактора -  патент 2501105 (10.12.2013)
устройство для получения битума -  патент 2499813 (27.11.2013)
плазмохимический способ получения модифицированного ультрадисперсного порошка -  патент 2492027 (10.09.2013)
способ очистки углеводородного газа от сероводорода -  патент 2477649 (20.03.2013)
установка для электрогидравлического обогащения и концентрирования минерального, в том числе золотосодержащего сырья с высоким содержанием глинистых компонентов -  патент 2477173 (10.03.2013)
способ очистки сточных вод -  патент 2473469 (27.01.2013)
установка для электровзрывной активации водных пульп и суспензий -  патент 2470875 (27.12.2012)
система распыления топлива при содействии электрического поля и способы использования -  патент 2469205 (10.12.2012)

Класс B01J20/20 содержащие свободный углерод; содержащие углерод, полученный процессами коксования

способ получения углеродминерального сорбента -  патент 2529535 (27.09.2014)
способ получения углеродного адсорбента -  патент 2518579 (10.06.2014)
формованный сорбент внииту-1, способ его изготовления и способ профилактики гнойно-септических осложнений в акушерстве -  патент 2516878 (20.05.2014)
композиции на основе хлорида брома, предназначенные для удаления ртути из продуктов сгорания топлива -  патент 2515451 (10.05.2014)
сорбент для диализа -  патент 2514956 (10.05.2014)
спеченный неиспаряющийся геттер -  патент 2513563 (20.04.2014)
регенерируемый, керамический фильтр твердых частиц выхлопных газов для дизельных транспортных средств и способ его получения -  патент 2511997 (10.04.2014)
способ получения хемосорбента -  патент 2510868 (10.04.2014)
сорбирующие композиции и способы удаления ртути из потоков отходящих топочных газов -  патент 2509600 (20.03.2014)
углеродсодержащие материалы, полученные из латекса -  патент 2505480 (27.01.2014)

Класс B01J21/18 углерод

способ получения нановискерных структур оксидных вольфрамовых бронз на угольном материале -  патент 2525543 (20.08.2014)
способ изготовления металл-углерод содержащих тел -  патент 2520874 (27.06.2014)
катализатор на основе меди, нанесенный на мезопористый уголь, способ его получения и применения -  патент 2517108 (27.05.2014)
фотокатализатор на основе оксида титана и способ его получения -  патент 2508938 (10.03.2014)
способ селективного гидрирования фенилацетилена в присутствии стирола -  патент 2505519 (27.01.2014)
способ получения катализатора -  патент 2498852 (20.11.2013)
способ получения мембранного катализатора и способ дегидрирования углеводородов с использованием полученного катализатора -  патент 2497587 (10.11.2013)
способ модификации электрохимических катализаторов на углеродном носителе -  патент 2495158 (10.10.2013)
состав и способ синтеза катализатора гидродеоксигенации кислородсодержащего углеводородного сырья -  патент 2492922 (20.09.2013)
способ электрохимического получения катализатора pt-nio/c -  патент 2486958 (10.07.2013)

Класс B82B3/00 Изготовление или обработка наноструктур

Наверх