энергоустановка на топливных элементах водородно-кислородного накопителя энергии

Классы МПК:H01M8/06 комбинации топливных элементов с устройствами для образования реагирующих веществ или для обработки остатков отработанных реагирующих веществ
H01M16/00 Конструктивные комбинации электрохимических генераторов различных типов
Автор(ы):
Патентообладатель(и):Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" им. С.П. Королева" (RU)
Приоритеты:
подача заявки:
2005-05-11
публикация патента:

Изобретение относится к энергоустановкам (ЭУ), предназначенным для хранения электроэнергии. Техническим результатом изобретения является повышение пожаровзрывобезопасности ЭУ. Согласно ЭУ на топливных элементах водородно-кислородного накопителя энергии включает размещенные в общем корпусе электрохимический генератор и электролизный блок, пневматически соединенные кислородной и водородной магистралями, к которым подключены также баллоны со сжатыми кислородом и водородом соответственно, а также емкость с реакционной водой, гидравлически соединенная с электрохимическим генератором и электролизным блоком. Емкость с реакционной водой выполнена в виде полой перегородки, заполненной этой водой и разделяющей корпус энергоустановки на две части, в одной из которых размещены баллоны со сжатым водородом, а в другой - баллоны со сжатым кислородом. 1 з.п. ф-лы, 1 ил. энергоустановка на топливных элементах водородно-кислородного   накопителя энергии, патент № 2312430

энергоустановка на топливных элементах водородно-кислородного   накопителя энергии, патент № 2312430

Формула изобретения

1. Энергоустановка на топливных элементах водородно-кислородного накопителя энергии, включающая размещенные в общем корпусе электрохимический генератор и электролизный блок, пневматически соединенные кислородной и водородной магистралями, к которым подключены также баллоны со сжатыми кислородом и водородом соответственно, а также емкость с реакционной водой, гидравлически соединенная с электрохимическим генератором и электролизным блоком, отличающаяся тем, что емкость с реакционной водой выполнена в виде полой перегородки, заполненной этой водой и разделяющей корпус энергоустановки на две части, в одной из которых размещены баллоны со сжатым водородом, а в другой - баллоны со сжатым кислородом.

2. Энергоустановка на топливных элементах по п.1, отличающаяся тем, что стенки ее корпуса выполнены в виде полой оболочки, заполненной водой.

Описание изобретения к патенту

Среди энергоустановок (ЭУ), предназначенных для хранения электроэнергии, системы типа «электролизер - электрохимический генератор» известны достаточно хорошо. В таких системах энергия хранится в виде кислорода и водорода, которые получаются путем электролиза воды в электролизере, а при необходимости из этих газов в электрохимическом генераторе (ЭХГ) опять получают электроэнергию [1] (аналог). Такие системы хранения имеют многочисленные достоинства, основными из которых являются практически неограниченное время хранения энергии, а также отсутствие ее потерь.

Одной из основных проблем, затрудняющих использование подобных водородно-кислородных накопителей энергии (ВКН) в бытовых системах энергообеспечения, является их взрывоопасность. Естественное стремление к компактности таких ЭУ, особенно установок с небольшой энергоемкостью приводит к тому, что водород и кислород приходится хранить при достаточно высоком давлении в баллонах, расположенных вблизи друг от друга. Это многократно повышает опасность взрыва (например, при протечках арматуры) и увеличивает его мощность. Например, при энергоемкости такого ВКН всего ˜50 кВт·ч энергия хранящегося в ЭУ водорода эквивалентна энергии, высвобождаемой при взрыве 35 кг динамита. Таким образом, сам принцип хранения электроэнергии в виде водорода и кислорода выдвигает на одно из первых мест проблему взрывобезопасности ЭУ.

Более близким к предлагаемому является техническое решение, предложенное для энергоустановки электромобиля [2] (прототип), когда взрывобезопасность ЭУ со сжатыми кислородом и водородом обеспечивается за счет секционирования ЭУ с использованием прочных (например, бронированных) перегородок и корпуса автомобиля. Реакционная вода, генерируемая в ЭХГ, при этом собирается, но в работе ЭУ не используется.

Недостатком прототипа является то обстоятельство, что защитные перекрытия и экраны, вообще говоря, не подавляют взрывные волны, а отражают их, перенаправляя в другие стороны. При этом отраженные волны имеют большую амплитуду и могут действовать как на элементы ЭУ, так и на объекты, расположенные рядом с этой установкой.

При полном же экранировании ЭУ приходится использовать тяжелые газонепроницаемые оболочки, затрудняющие обслуживание установки и ухудшающие ее удельные массовые характеристики. Кроме того, взрыв внутри непроницаемой оболочки усиливает свое разрушительное действие, а в случае разрушения защитных экранов возможно образование осколков.

Задачей предлагаемого технического решения является таким образом разработка ВКН с повышенным уровнем взрывобезопасности, то есть системой взрывозащиты, обладающей демпфирующим действием и пониженной вероятностью взаимного инициирования взрыва водородных и кислородных баллонов.

Задача решается тем, что в энергоустановке на топливных элементах водородно-кислородного накопителя энергии, включающей размещенные в общем корпусе электрохимический генератор и электролизный блок, пневматически соединенные кислородной и водородной магистралями, к которым подключены также баллоны со сжатыми кислородом и водородом соответственно, а также емкость с реакционной водой, гидравлически соединенная с электрохимическим генератором и электролизным блоком, емкость с реакционной водой выполнена в виде полой перегородки, заполненной этой водой и разделяющей корпус энергоустановки на две части, в одной из которых размещены баллоны со сжатым водородом, а в другой - баллоны со сжатым кислородом.

Кроме того, стенки корпуса этой энергоустановки могут быть выполнены в виде полой оболочки, также заполненной водой.

Суть предложения заключается в том, что внутренний объем ЭУ секционируется таким образом, чтобы кислородные и водородные баллоны были разделены прослойками из реакционной воды (например, полый экран, заполненный водой). Таким образом, реакционная вода применяется не только как реагент, но и как защитное устройство.

Вода (или завеса воды) часто используется как защитное средство от взрывных волн. Взаимодействуя с водой, волна тратит свою энергию на ее дробление и испарение капель. Поскольку же теплота испарения воды велика, она достаточно эффективно демпфирует взрывные волны.

Кроме того, разрушение перегородки из воды приводит к тому, что среда внутри корпуса ЭУ переобогащается капельной водой и водяным паром, что может сделать невозможным взрыв кислородно-водородной смеси или, по крайней мере, существенно его ослабить.

Схема кислородно-водородной ЭУ (ВКН) дана на фиг.1, где обозначено:

1 - корпус ЭУ; 2 - баллоны со сжатым водородом; 3 - баллоны со сжатым кислородом; 4 - емкость с реакционной водой; 5 - ЭХГ; 6 - электролизный блок, соединенный с ЭХГ (соединительные магистрали на чертеже условно не показаны).

В изобретении баллоны со сжатым водородом (2) размещены в верхней части ЭУ, а баллоны со сжатым кислородом (3) - в ее нижней части. Корпус (1) установки для наглядности показан условно. Рядом с баллонами имеется свободное место для размещения ЭХГ (5) и электролизного блока (6) (точное их расположение на данной схеме не имеет принципиального значения). В средней части ЭУ размещена емкость с реакционной водой (4), разделяющая баллоны со сжатым водородом (2) и баллоны со сжатым кислородом (3). Количество реакционной воды определяет энергоемкость установки.

В случае взрыва баллонов со сжатым водородом (2) ударная волна, прежде чем разрушить баллоны со сжатым кислородом (3), пройдет через реакционную воду, распылит ее и частично испарит. Тем самым энергия ударной волны существенно снизится, и баллоны с кислородом могут остаться неповрежденными. Даже в случае их разрушения последующая взрывная реакция водорода и кислорода будет существенно ослаблена за счет того, что в объеме ЭУ распылена вода. При достаточно большом количестве распыленной воды реакция водорода и кислорода вообще может принять характер горения, а не взрыва [3].

Для повышения степени взрывозащищенности ЭУ корпус установки (1) также может заполняться водой. Следует также отметить, что использование защитных прокладок из воды не слишком затруднит обслуживание ЭУ (воду всегда можно слить) и исключает образование осколков в случае разрушения защиты

Таким образом, предложенная ЭУ на топливных элементах водородно-кислородного накопителя электроэнергии позволяет повысить пожаро-взрывобезопасность подобных ЭУ для значительных изменений их конструкции, за счет рационального размещения запасов реакционной воды.

Литература:

1. «Система энергопитания постоянного тока. RU №2076405, 1997 г.

2. «Транспортное устройство с автономным химическим источником энергии». RU №2219075, 2002 г.

3. Справочник «Водород, свойства, получение, хранение...» под ред. Д.Ю.Гамбурга. Москва, «Химия», 1989, стр.50.

Класс H01M8/06 комбинации топливных элементов с устройствами для образования реагирующих веществ или для обработки остатков отработанных реагирующих веществ

способ получения электроэнергии из водорода с использованием топливных элементов и система энергопитания для его реализации -  патент 2523023 (20.07.2014)
регенеративная электрохимическая система энергоснабжения пилотируемого космического аппарата с замкнутым по воде рабочим циклом и способ ее эксплуатации -  патент 2516534 (20.05.2014)
система топливного элемента и способ ее управления -  патент 2504052 (10.01.2014)
способ генерации энергии в гибридной энергоустановке -  патент 2465693 (27.10.2012)
устройство для выработки водорода и оборудованная им система топливного элемента -  патент 2459764 (27.08.2012)
генератор водорода и источник энергии с топливным элементом -  патент 2458854 (20.08.2012)
авиационная система генератора электроэнергии, использующая топливные батареи -  патент 2431585 (20.10.2011)
энергоустановка с электрохимическим генератором на основе водородно-кислородных топливных элементов и способ ее эксплуатации -  патент 2417487 (27.04.2011)
способ эксплуатации электрохимического генератора на основе водородно-кислородных топливных элементов в вакууме -  патент 2415497 (27.03.2011)
устройство, способ и система для получения тепловой и/или кинетической, а также электрической энергии -  патент 2414774 (20.03.2011)

Класс H01M16/00 Конструктивные комбинации электрохимических генераторов различных типов

термоэлектрический блок питания -  патент 2371816 (27.10.2009)
автономная система энергопитания и способ ее эксплуатации -  патент 2371813 (27.10.2009)
энергоустановка и способ управления энергоустановкой -  патент 2357332 (27.05.2009)
автономный источник питания на топливных элементах -  патент 2351040 (27.03.2009)
система электроснабжения, использующая в качестве источника солнечную энергию -  патент 2346356 (10.02.2009)
энергоустановка на основе топливных элементов и способ управления энергоустановкой -  патент 2345447 (27.01.2009)
энергетическая установка подводного аппарата -  патент 2320056 (20.03.2008)
источник питания на основе топливных элементов -  патент 2304327 (10.08.2007)
энергетическая установка подводного аппарата -  патент 2284078 (20.09.2006)
способ эксплуатации термоэлектрохимических генераторов (тэхг) для получения водорода при ионизационном облучении -  патент 2280927 (27.07.2006)
Наверх