рабочий электролит для определения капиллярным электрофорезом ионного состава жидких сред
Классы МПК: | G01N33/18 воды G01N33/14 спиртных напитков G01N27/447 использующие электрофорез |
Автор(ы): | Поляков Виктор Антонович (RU), Мицен Виталий Евгеньевич (RU), Шелехова Тамара Михайловна (RU), Веселовская Ольга Владимировна (RU), Скворцова Любовь Ивановна (RU), Овчинников Олег Александрович (RU), Космынин Александр Владимирович (RU), Шелехова Наталия Викторовна (RU) |
Патентообладатель(и): | Государственное научное учреждение Всероссийский научно-исследовательский институт пищевой биотехнологии Российской академии сельскохозяйственных наук (RU) |
Приоритеты: |
подача заявки:
2006-09-20 публикация патента:
20.01.2008 |
Изобретение относится к пищевой промышленности, биотехнологии, ликероводочной промышленности, производству безалкогольных напитков и связано с определением содержания катионов, аминов, анионов органических и неорганических кислот в различных средах. Рабочий электролит для определения капиллярным электрофорезом ионного состава жидких сред имеет следующее соотношение ингредиентов, мМоль/л: гистидин 25-35, 2-морфолиноэтансульфоновая кислота 100-140, Краун-эфир 1,5-2,5, а также %: Тритон Х-100 0,02-0,50, вода остальное. Достигается обеспечение универсальности условий для одновременного определения содержания катионов, аминов, анионов неорганических и органических кислот в жидких водных и водно-спиртовых средах производств биотехнологии, безалкогольных напитков, ликероводочной промышленности, в водах.
Формула изобретения
Рабочий электролит для определения капиллярным электрофорезом ионного состава жидких сред, содержащий гистидин, 2-морфолиноэтансульфоновую кислоту, Краун-эфир и воду, отличающийся тем, что он дополнительно содержит тритон Х-100 при следующем соотношении ингредиентов, мМоль/л:
гистидин | 25-35 |
2-морфолиноэтансульфоновая кислота | 100-140 |
Краун-эфир | 1,5-2,5 |
а также %:
Тритон Х-100 | 0,02-0,50 |
вода | остальное |
Описание изобретения к патенту
Изобретение относится к пищевой, ликероводочной промышленности, биотехнологии, производству безалкогольных напитков и может найти применение для определения ионного состава жидких сред - содержания катионов, аминов, анионов неорганических и органических кислот в водных и водно-спиртовых растворах (в водах, сырье, промежуточных и целевых продуктах биотехнологии, ликероводочной промышленности, производстве безалкогольных напитков и безалкогольных напитков брожения).
Природное сырье для проведения биотехнологических процессов, производства алкогольных, слабоалкогольных и безалкогольных напитков, промежуточные и целевые продукты этих процессов отличаются многокомпонентностью состава, совместным присутствием в них сложных смесей химических соединений, в том числе сложным ионным составом - содержанием катионов, аминов, анионов неорганических и органических кислот. Одновременное определение содержания соединений разнообразной химической природы, находящихся в анализируемой жидкости, вызывает затруднения и требует поиска универсальных приемов, применимых при анализе различных жидкостей сложного химического состава, характерных для биотехнологических процессов. Задача усложняется также тем, что биотехнологические процессы могут осуществляться не только в водной, но и в водно-спиртовой среде, что требует разработки универсальных составов рабочих электролитов, применимых для анализа ионного состава разных жидких сред.
Для определения катионов, аминов, анионов неорганических и органических кислот применяют способы, в основе которых лежит капиллярное электролитическое разделение определяемых компонентов с использованием рабочих электролитов разнообразных составов.
Так, известен рабочий электролит для определения капиллярным электрофорезом ионного состава жидкости, содержащий 2-циклогексиламиноэтансульфоновую кислоту, гидроксид лития, Тритон Х-100 и воду (Haber С. et all. J. Cap. Elec., 1996, №3, p.1) /1/.
Данный известный рабочий электролит позволяет определять капиллярным электрофорезом только анионы неорганических и органических кислот и только в водных средах. Его не используют для анализа ионного состава водно-спиртовых сред, а также не используют для определения катионов и аминов в жидких средах. При работе с этим известным рабочим электролитом перед каждым анализом капилляр необходимо обрабатывать раствором бромида гексадецилтриметиламмония, что усложняет анализ, приводит к излишним расходам реактива и избыточным трудозатратам.
Известен рабочий электролит, который позволяет определять капиллярным электрофорезом только катионы и амины в водных средах. Этот известный рабочий электролит содержит 20 мМоль/л гистидина, 20 мМоль/л 2-морфолиноэтансульфоновой кислоты и 1 мМоль/л Краун-эфира, вода - остальное (Mayrhofer К. et all. Anal. Chem., 1999, 71, 3828-3833) /2/.
Однако данный известный рабочий электролит не применяется для анализа водно-спиртовых сред, а также для определения анионов органических и неорганических кислот в жидких средах.
Наиболее близким аналогом заявляемого рабочего электролита является известный рабочий электролит для определения капиллярным электрофорезом ионного состава жидких сред, содержащий 50 мМоль/л гистидина, 50 мМоль/л 2-морфолиноэтансульфоновой кислоты и 1 мМоль/л Краун-эфира, вода - остальное (Unterhoizner V.: Analyst., 2002, 127, 715-718) /3/.
Однако данный известный рабочий электролит применяется для определения только катионов и анионов неорганических кислот и только в водной среде. Он не применяется для определения аминов и анионов органических кислот в жидких средах. Его не применяют для определения ионного состава водно-спиртовых сред, характерных для битехнологических процессов, для ликероводочных производств.
Техническим результатом, достигаемым настоящим изобретением, является обеспечение универсальности условий для одновременного определения катионов, аминов, анионов органических и неорганических кислот в жидких водных и водно-спиртовых средах пищевых производств, биотехнологических процессов, ликероводочных производств, производства безалкогольных напитков и вод.
Достигается указанный технический результат за счет того, что рабочий электролит для определения капиллярным электрофорезом ионного состава жидких сред, содержащий гистидин, 2-морфолиноэтансульфоновую кислоту, Краун-эфир и воду, дополнительно содержит Тритон Х-100 при следующем соотношении ингредиентов, мМоль/л:
гистидин | 25-35 |
2-морфолиноэтансульфоновая кислота | 100-140 |
Краун-эфир | 1,5-2,5 |
а также, %: | |
Тритон Х-100 | 0,02-0,50 |
вода | остальное |
Собственные исследования показали, что, изменив соотношение ингредиентов в известном рабочем электролите 131 и добавив в его состав тритон Х-100 (алкил-циклогексил или алкил-фенил полигликолевый эфир), можно использовать новый рабочий электролит для одновременного определения катионов, аминов, анионов неорганических и органических кислот, причем не только в водных, но и в водно-спиртовых средах.
Ниже приведены примеры, иллюстрирующие изобретение.
Пример 1. Проводят анализ образца питьевой воды. Для определения ионного состава готовят рабочий электролит следующего состава: 25 мМоль/л гистидина, 100 мМоль/л 2-морфолиноэтансульфоновой кислоты, 1,5 мМоль Краун-эфира и 0,02% Тритона Х-100, вода - остальное. Капилляр заполняют приготовленным рабочим электролитом. Используют капилляр с внутренним диаметром 50 мкм. Эффективная длина капилляра 80 см со стороны катионов и аминов и 40 см со стороны анионов. Пробу анализируемой жидкости последовательно вводят в заполненный рабочим электролитом капилляр с двух концов под давлением 20 мбар в течение 30 с. Затем воздействуют на пробу в капилляре электрическим полем с рабочим напряжением 28 кВ. В пробе обнаружены анионы неорганических кислот: 5,33 мг/дм3 хлоридов, 0,39 мг/дм 3 нитратов, 18,87 мг/дм3 сульфатов, 3,30 мг/дм3 фторидов, и катионы: 0,09 мг/дм 3 аммония, 3,71 мг/дм3 калия, 15,64 мг/дм3 кальция, 44,58 мг/дм 3 натрия, 11,48 мг/дм3 магния и 1,23 мг/дм3 стронция.
Пример 2. Проводят анализ образца воды исправленной. Для определения ионного состава готовят рабочий электролит следующего состава: 35 мМоль/л гистидина, 140 мМоль/л 2-морфолиноэтансульфоновой кислоты, 2,5 мМоль Краун-эфира и 0,50% Тритона Х-100, вода - остальное. Капилляр заполняют приготовленным раствором рабочего электролита. Используют капилляр с внутренним диаметром 50 мкм. Эффективная длина капилляра 100 см со стороны катионов и аминов и 20 см со стороны анионов. Пробу анализируемой жидкости последовательно вводят в заполненный рабочим электролитом капилляр с двух концов под давлением 70 мбар в течение 30 с. Затем воздействуют на пробу в капилляре электрическим полем с рабочим напряжением 30 кВ. В пробе обнаружены анионы неорганических кислот: 2,05 мг/дм3 хлоридов, 0,16 мг/дм 3 нитратов, 6,95 мг/дм3 сульфатов, 1,27 мг/дм3 фторидов, и катионы: 0,81 мг/дм 3 калия, 0,25 мг/дм3 кальция, 35,34 мг/дм3 натрия и 0,11 мг/дм 3 магния.
Пример 3. По методике примера 1 провели анализ образца водки. В образце определены следующие анионы неорганических кислот: 3,56 мг/дм3 хлоридов, 1,11 мг/дм 3 нитратов, 15,78 мг/дм3 сульфатов, 0,17 мг/дм3 фторидов, амины: 0,15 мг/дм 3 диэтиламина, 0,19 мг/дм3 этаноламина, 0,23 мг/дм3 пропиламина, анионы органических кислот: 2,74 мг/дм3 оксалатов, 0,28 мг/дм 3 формиатов, 0,31 мг/дм3 ацетатов, 11,24 мг/дм3 лактатов, и катионы: 0,05 мг/дм3 аммония, 0,04 мг/дм 3 калия, 0,02 мг/дм3 кальция, 14,57 мг/дм3 натрия и 0,09 мг/дм 3 магния.
Пример 4. По методике примера 2 провели анализ образца пива, разбавленного в 10 раз деионизированной водой. В образце определены следующие анионы неорганических кислот: 90,42 мг/дм3 хлоридов, 40,24 мг/дм 3 сульфатов, анионы органических кислот: 63,91 ацетатов, 115,26 мг/дм3 лактатов, 86,37 мг/дм 3 малатов, 104,38 мг/дм3 цитратов, 104,38 мг/дм3 сукцинатов, и катионы: 20,95 мг/дм3 аммония, 76,08 мг/дм 3 калия, 27,19 мг/дм3 кальция, 18,97 мг/дм3 натрия и 69,02 мг/дм 3 магния.
Пример 5. По методике примера 1 провели анализ образца красного вина, разбавленного в 20 раз деионизированной водой. В образце определены следующие анионы неорганических кислот: 20,86 мг/дм3 хлоридов, 460,95 мг/дм 3 сульфатов, анионы органических кислот: 850,33 мг/дм 3 ацетатов, 110,46 мг/дм3 лактатов, 1908,58 мг/дм3 цитратов, 208,11 мг/дм 3 сукцинатов, 632,60 мг/дм3 тартратов, и катионы: 14,25 мг/дм3 аммония, 406,19 мг/дм3 калия, 134,51 мг/дм 3 кальция, 67,40 мг/дм3 натрия и 73,76 мг/дм3 магния.
Пример 6. По методике примера 2 провели анализ образца белого вина, разбавленного в 20 раз деионизированной водой. В образце определены следующие анионы неорганических кислот: 23,52 мг/дм3 хлоридов, 532,16 мг/дм3 сульфатов, анионы органических кислот: 334,16 мг/дм3 ацетатов, 356,76 мг/дм3 лактатов, 571,22 мг/дм 3 цитратов, 407,98 мг/дм3 сукцинатов, 1425,21 мг/дм3 тартратов, 1589,34 мг/дм 3 малатов, и катионы: 8,23 мг/дм3 аммония, 512,74 мг/дм3 калия, 144,63 мг/дм 3 кальция, 129,19 мг/дм3 натрия и 156,38 мг/дм3 магния.
Пример 7. На примере искусственной смеси, содержащей 40 компонентов (9 катионов, 11 аминов, 11 анионов органических кислот и 9 анионов неорганических кислот, растворенных в двух видах растворителей: в водно-спиртовой среде и в воде), показано, что рабочий электролит согласно изобретению обеспечивает определение всех компонентов этой смеси во всех испытанных средах за одно определение.
Таким образом, рабочий электролит согласно изобретению является универсальным электролитом для одновременного электрофоретического капиллярного определения катионов, аминов, анионов органических и неорганических кислот, содержащихся в водных или водно-спиртовых средах. Он применим для анализа жидкостей сложного химического состава - продуктов биотехнологии, ликероводочной промышленности, производства безалкогольных напитков и безалкогольных напитков брожения.
Класс G01N33/14 спиртных напитков
Класс G01N27/447 использующие электрофорез