способ обработки деталей

Классы МПК:C21D1/04 с одновременным использованием ультразвука, магнитных или электрических полей 
Автор(ы):, , ,
Патентообладатель(и):Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "САЛЮТ" (ФГУП "ММПП "САЛЮТ") (RU)
Приоритеты:
подача заявки:
2006-07-20
публикация патента:

Изобретение относится к машиностроению, в частности к бесконтактной магнитоимпульсной обработке деталей газотурбинных двигателей, работающих в агрессивных высокотемпературных средах в условиях знакопеременных нагрузок. Для повышения технологичности обработки за счет возможности формирования заданных величин остаточных напряжений в поверхностном слое детали, а также увеличения ресурса детали на деталь воздействуют импульсным магнитным полем с заданными параметрами. Перед воздействием на деталь импульсным магнитным полем измеряют величины способ обработки деталей, патент № 2316602 i остаточных напряжений на глубине k залегания в n точках поверхностного слоя детали, где nспособ обработки деталей, патент № 2316602 3. Вычисляют среднюю величину способ обработки деталей, патент № 2316602 cp остаточных напряжений из измеренных в n точках величин способ обработки деталей, патент № 2316602 i остаточных напряжений. Определяют величину способ обработки деталей, патент № 2316602 способ обработки деталей, патент № 2316602 =|способ обработки деталей, патент № 2316602 з-способ обработки деталей, патент № 2316602 ср|, где способ обработки деталей, патент № 2316602 з - заданная величина остаточного напряжения, которую необходимо сформировать в поверхностном слое деталей на глубине k. Исходя из полученной величины способ обработки деталей, патент № 2316602 способ обработки деталей, патент № 2316602 задают параметры импульсного магнитного поля. 2 табл.

Формула изобретения

Способ обработки детали, включающий воздействие на деталь импульсным магнитным полем с заданными параметрами для формирования остаточных напряжений в поверхностном слое, отличающийся тем, что перед воздействием на деталь импульсным магнитным полем измеряют величины остаточных напряжений способ обработки деталей, патент № 2316602 i на глубине k залегания в n точках поверхностного слоя детали, где nспособ обработки деталей, патент № 2316602 3, вычисляют среднюю величину способ обработки деталей, патент № 2316602 cp остаточных напряжений из измеренных в n точках величин способ обработки деталей, патент № 2316602 i, определяют способ обработки деталей, патент № 2316602 способ обработки деталей, патент № 2316602 =|способ обработки деталей, патент № 2316602 з-способ обработки деталей, патент № 2316602 ср|, где способ обработки деталей, патент № 2316602 з - заданная величина остаточного напряжения, которую необходимо сформировать в поверхностном слое деталей на глубине k, и исходя из полученной величины способ обработки деталей, патент № 2316602 способ обработки деталей, патент № 2316602 задают параметры воздействия импульсного магнитного поля.

Описание изобретения к патенту

Изобретение относится к машиностроению, в частности к бесконтактной магнитоимпульсной обработке деталей газотурбинных двигателей, работающих в агрессивных высокотемпературных средах в условиях знакопеременных нагрузок.

После завершения ряда операций механической обработки (фрезерование, точение, шлифование, протягивание и т.п.) в поверхностном слое обрабатываемых деталей, как правило, формируются растягивающие остаточные напряжения. Для уменьшения величин растягивающих остаточных напряжений деталь подвергают магнитоимпульсной обработке, включающей воздействие импульсным магнитным полем с заданными параметрами напряженности магнитного поля, частотой, длительности импульса и т.д.

Известен способ обработки детали (А.с. №1708872 А1, 30.01.1992, C21D 1/06), включающий воздействие на деталь импульсным магнитным полем с заданными параметрами: количество импульсов, по меньшей мере три, длительность одного импульса и паузы составляет 0,03-0,05 и 0,02-0,1 с, удельная мощность в импульсе 10-50 кВт/см2.

Недостатком данного способа является технологическая сложность получения упрочненного слоя в обрабатываемом материале из-за необходимости синхронизировать несколько технологических процессов и изготовлять специальную оснастку, а также данный способ не позволяет сформировать заданные величины остаточных напряжений в поверхностном слое детали.

Известен способ обработки детали, включающий воздействие на деталь импульсным магнитным полем с заданными параметрами (Патент РФ №2009210 С1, 15.03.1994, C21D 1/04) - прототип. В данном способе на деталь воздействуют магнитным полем напряженностью 8·105 -2·106 А/м с частотой 700-800 Гц в течение 3/4-5/4способ обработки деталей, патент № 2316602 периода частоты.

Недостатками данного способа является то, что указанные диапазоны режимов магнитоимпульсной обработки могут быть эффективно применены только для инструментальных материалов, но недостаточны для широкой номенклатуры машиностроительных материалов (например, жаропрочные стали, титан и т.д.), а также данный способ не позволяет сформировать заданные величины остаточных напряжений в поверхностном слое детали, что уменьшает технологичность обработки, а также ресурс работы детали.

Все ранее известные методы обработки деталей, включающие воздействие на деталь импульсным магнитным полем, позволяют только уменьшить величины растягивающих остаточных напряжений, но не позволяют получить необходимые заданные величины остаточных напряжений в поверхностном слое детали, т.е. управлять величиной остаточных напряжений.

Технический результат заявленного изобретения - повышение технологичности обработки за счет возможности формирования заданных величин остаточных напряжений в поверхностном слое детали, а также увеличение ресурса работы детали.

Указанный технический результат достигается тем, что в способе обработки детали, включающем воздействие на деталь импульсным магнитным полем с заданными параметрами, перед воздействием на деталь импульсным магнитным полем измеряют величины способ обработки деталей, патент № 2316602 i остаточных напряжений на глубине k залегания в n точках поверхностного слоя детали, где nспособ обработки деталей, патент № 2316602 3, вычисляют среднюю величину способ обработки деталей, патент № 2316602 cp остаточных напряжений из измеренных в n точках величин способ обработки деталей, патент № 2316602 i остаточных напряжений, определяют величину способ обработки деталей, патент № 2316602 способ обработки деталей, патент № 2316602 =|способ обработки деталей, патент № 2316602 з-способ обработки деталей, патент № 2316602 cp|, где способ обработки деталей, патент № 2316602 з - заданная величина остаточного напряжения, которую необходимо сформировать в поверхностном слое деталей на глубине k, и исходя из полученной величины способ обработки деталей, патент № 2316602 способ обработки деталей, патент № 2316602 задают параметры импульсного магнитного поля.

Выполнение перед магнитоимпульсной обработкой детали операций, а именно измерение величины способ обработки деталей, патент № 2316602 i остаточных напряжений на глубине k залегания в n точках поверхностного слоя детали, где nспособ обработки деталей, патент № 2316602 3, вычисление средней величины способ обработки деталей, патент № 2316602 cp остаточных напряжений из измеренных в n точках величин способ обработки деталей, патент № 2316602 i остаточных напряжений, определение величины способ обработки деталей, патент № 2316602 способ обработки деталей, патент № 2316602 , позволяет назначить более точные по сравнению с используемыми в известных ранее методах магнитоимпульсной обработки параметры импульсного магнитного поля, а также позволяет осуществить формирование заданных величин остаточных напряжений (управлять величиной остаточных напряжений) в поверхностном слое детали. Все это ведет к повышению технологичности обработки, а также увеличению ресурса детали.

При магнитоимпульсной обработке в детали вследствие неоднородной кристаллической структуры возникают вихревые токи. Вихревые токи обуславливают магнитное поле и локальные микровихри, которые, в свою очередь, нагревают участки вокруг кристаллитов (монокристаллические зерна или коротенькие цепочки монокристаллов, не превратившиеся в кристаллы) напряженных блоков и неоднородностей структуры металла. Градиент теплового потока при магнитоимпульсной обработке тем выше, чем менее однородна микроструктура металла. В местах концентраций остаточных или усталостных напряжений, связанных с технологией производства, обработки или эксплуатации детали, теплота, наведенная вихревыми токами, частично уменьшает избыточную энергию составляющих кристаллитов. Вследствие этого повышается ударная вязкость, сопротивление усталости материала детали, что, в свою очередь, повышает износостойкость материала детали в зоне намагничивания.

Предложенный способ в отличие от известных ранее способов обработки детали, включающих магнитоимпульсную обработку, позволяет не только уменьшить или снять остаточные напряжения растяжения в поверхностном слое, но и сформировать в последнем заданную величину остаточных напряжений.

Воздействие магнитного поля на материал детали возможно обеспечить любым известным способом, в том числе, например, с помощью электромагнита или соленоида (индуктора), охватывающего необходимую зону обработки. В случае использования электромагнита обеспечивается его контакт с деталью в зоне обработки, в случае использования соленоида воздействие магнитного поля на материал детали осуществляется бесконтактно.

Параметры импульсного магнитного поля назначают исходя из величины способ обработки деталей, патент № 2316602 способ обработки деталей, патент № 2316602 и могут быть выбраны в следующих интервалах: напряженность магнитного поля 50-2000 кА/м, длительность импульса 0,003-10 с, частота 50 Гц - 1 кГц.

Глубину залегания k, на которой необходимо получить заданные остаточные напряжения, выбирают исходя из расчета силовой нагрузки и эксплуатационной прочности детали.

Среднюю величину способ обработки деталей, патент № 2316602 ср остаточных напряжений вычисляют следующим образом:

способ обработки деталей, патент № 2316602

где способ обработки деталей, патент № 2316602 i - величина остаточного напряжения в i-й точке на глубине залегания k в поверхностном слое детали;

n - количество точек поверхностного слоя детали на глубине залегания k, в которых измеряют величины способ обработки деталей, патент № 2316602 i остаточных напряжений, причем nспособ обработки деталей, патент № 2316602 3.

Величину способ обработки деталей, патент № 2316602 способ обработки деталей, патент № 2316602 определяют следующим образом:

способ обработки деталей, патент № 2316602 способ обработки деталей, патент № 2316602 =|способ обработки деталей, патент № 2316602 з-способ обработки деталей, патент № 2316602 cp|, где способ обработки деталей, патент № 2316602 з - заданная величина остаточного напряжения, которую необходимо сформировать в поверхностном слое деталей на глубине k.

Величину способ обработки деталей, патент № 2316602 з задают исходя из эксплуатационных и конструктивных особенностей деталей.

Примеры выбора параметров импульсного магнитного поля в зависимости от величины способ обработки деталей, патент № 2316602 способ обработки деталей, патент № 2316602 на заданной глубине залегания k, равной, например, 50 мкм, приведены в табл.1.

Табл.1
способ обработки деталей, патент № 2316602 способ обработки деталей, патент № 2316602 , МПаНапряженность магнитного поля, кА/мДлительность импульса, с Частота, Гц
100 1900850
2501550 1,5100
400 11001 180
550800 0,02250
8003500,004 1000

В настоящее время существуют десятки различных типов установок и устройств для магнитоимпульсной обработки инструмента и деталей машин, как опытно-экспериментальных («ИМПУЛЬС-83С», «Импульс-Универсал»), так и опытно-промышленных («Импульс-80Г», «Импульс-ФМ»). Для реализации предложенного способа обработки деталей может быть использована любая известная магнитоимпульсная установка, например ВНИМИ, ЭМО, МИУРИ, УМОИ-50, «Импульс-ЗМ», БУР-83, «Контакт» и т.д., каждая из которых является универсальной для проведения магнитной обработки как инструмента, так и различных деталей машин, изделий, конструкций и сборочных единиц. Данные установки имеют примерно одинаковую функциональную схему, но различаются конструктивно, наличием систем автоматического и электронного регулирования, напряженностью магнитного поля, назначением, технологией обработки и производительностью.

Выбор магнитоимпульсной установки для осуществления обработки зависит от конструктивных особенностей и физических свойств материала той партии деталей, которую необходимо подвергнуть обработке.

Технические характеристики некоторых экспериментальных и опытно-промышленных установок приведены в табл.2.

Табл.2
УстановкаМаксимальный ток в соленоиде, АНапряженность магнитного поля, кА/м Мощность, кВтВнутренний диаметр соленоида, ммЧисло сменных соленоидов
УМОИ-3050 2001-2 301
УМОИ-60Ш 1502000 2-5704
«Импульс-ЗМ»150 10003-565 1
«Импульс-84М» 15010002-10 804
Бур-1 50500 2-5701

Пример.

Измерения остаточных напряжений проводились механически по методу Давиденкова на автоматизированной установке. Образцы деталей (лопатки ГТД) из жаропрочного сплава ХН73МБТЮ, подвергнутые предварительным операциям точения и финишной обработки - полированию, имели шероховатость поверхности R a=0,32-0,16 и среднюю величину способ обработки деталей, патент № 2316602 cp=300 МПа растягивающих остаточных напряжений из измеренных в 5 точках величин способ обработки деталей, патент № 2316602 i остаточных напряжений на глубине 50 мкм. Было определено, что для повышения сопротивления усталости (соответственно и увеличения ресурса) данных деталей необходимо сформировать на глубине 50 мкм заданные остаточные напряжения сжатия способ обработки деталей, патент № 2316602 з=-200 МПа. Определив величину способ обработки деталей, патент № 2316602 способ обработки деталей, патент № 2316602 =|способ обработки деталей, патент № 2316602 з-способ обработки деталей, патент № 2316602 ср|=|-200-300|=500 МПа, назначили следующие параметры магнитоимпульсной обработки: напряженность магнитного поля 1800 кА/м и длительность импульса 0,01 с, частота 50 Гц. После проведения магнитоимпульсной обработки получили заданные величины остаточных напряжений способ обработки деталей, патент № 2316602 з, при этом значения шероховатости остались в пределах характеристик для деталей до магнитоимпульсной обработки Ra=0,32-0,16.

Проведенные после магнитоимпульсной обработки неоднократные испытания образцов деталей из сплава ХН73МБТЮ показали рост условного предела усталости на 20%.

Таким образом, предложенный способ обработки деталей позволяет сформировать в поверхностном слое деталей остаточные напряжения заранее заданных численных значений, не изменяя при этом топографии и параметров шероховатости обрабатываемой детали.

Класс C21D1/04 с одновременным использованием ультразвука, магнитных или электрических полей 

способ подготовки структуры стали к дальнейшей термической обработке -  патент 2526341 (20.08.2014)
способ термической обработки магнитотвердых сплавов системы железо-хром-кобальт -  патент 2511136 (10.04.2014)
способ термической обработки деформируемых магнитотвердых сплавов на основе системы железо-хром-кобальт -  патент 2495140 (10.10.2013)
способ термомагнитной обработки анизотропных магнитомягких материалов -  патент 2494153 (27.09.2013)
способ упрочняющей обработки тяжелонагруженных элементов металлических конструкций и устройство для его осуществления -  патент 2476605 (27.02.2013)
способ криогенной обработки аустенитной стали -  патент 2464324 (20.10.2012)
способ ультразвуковой обработки сварных металлоконструкций -  патент 2447162 (10.04.2012)
способ подготовки поверхности детали с использованием ультразвуковых колебаний -  патент 2442841 (20.02.2012)

способ определения границ фазовых переходов при перлитном превращении -  патент 2433190 (10.11.2011)
способ термомагнитной обработки магнитомягких материалов -  патент 2430975 (10.10.2011)
Наверх