высоконапорный многоступенчатый компрессор газотурбинного двигателя

Классы МПК:F04D29/00 Конструктивные элементы, узлы и вспомогательные устройства
Автор(ы):, ,
Патентообладатель(и):Открытое акционерное общество "АВИАДВИГАТЕЛЬ" (RU)
Приоритеты:
подача заявки:
2005-08-22
публикация патента:

Изобретение относится к высоконапорным многоступенчатым компрессорам газотурбинных двигателей авиационного и наземного применения. Техническая задача, на решение которой направлено изобретение, заключается в повышении КПД за счет регулирования радиальных зазоров между статором и ротором без использования дополнительных систем управления и исполнительных механизмов. В высоконапорном многоступенчатом компрессоре, включающем ступени компрессора с поворотными направляющими лопатками и последующие за ними ступени с фиксированными направляющими аппаратами, согласно изобретению, проточная часть n-ой ступени компрессора с фиксированными направляющими аппаратами соединена каналами с полостью обдува внутреннего корпуса последних ступеней компрессора, число которых определяют из соотношения: Z/Z1=2,0-4,0, причем n=m+(1...3), где: m - число ступеней компрессора с поворотными направляющими аппаратами; Z - общее число ступеней компрессора; Z1 - число последних ступеней компрессора с регулируемым радиальным зазором между статором и ротором. 3 ил. высоконапорный многоступенчатый компрессор газотурбинного двигателя, патент № 2317447

высоконапорный многоступенчатый компрессор газотурбинного двигателя, патент № 2317447 высоконапорный многоступенчатый компрессор газотурбинного двигателя, патент № 2317447 высоконапорный многоступенчатый компрессор газотурбинного двигателя, патент № 2317447

Формула изобретения

Высоконапорный многоступенчатый компрессор газотурбинного двигателя, включающий ступени компрессора с поворотными направляющими лопатками и последующие за ними ступени с фиксированными направляющими аппаратами, отличающийся тем, что проточная часть n-й ступени компрессора с фиксированными направляющими аппаратами соединена каналами с полостью обдува внутреннего корпуса последних ступеней компрессора, число которых определяют из соотношения Z/Z 1=2,0-4,0, причем n=m+(1...3), где

m - число ступеней компрессора с поворотными направляющими аппаратами;

Z - общее число ступеней компрессора;

Z1 - число последних ступеней компрессора с регулируемым радиальным зазором между статором и ротором.

Описание изобретения к патенту

Изобретение относится к высоконапорным многоступенчатым компрессорам газотурбинных двигателей авиационного и наземного применения.

Известен высоконапорный многоступенчатый компрессор газотурбинного двигателя с рабочими и направляющими лопатками [С.А.Вьюнов. Конструкция и проектирование авиационных газотурбинных двигателей, Москва, «Машиностроение», 1981, стр.64, рис.3.8а].

Недостатком известной конструкции является отсутствие в компрессоре поворотных направляющих аппаратов, что снижает запас газодинамической устойчивости компрессора.

Наиболее близким к заявляемому является высоконапорный многоступенчатый компрессор газотурбинного двигателя, семь первых ступеней в котором, начиная от входа, выполнены с поворотными направляющими аппаратами [Патент РФ №2235919, F04D 29/00, 2004 г.].

В известной конструкции, принятой за прототип, обеспечиваются высокие запасы газодинамической устойчивости на всех режимах работы газотурбинного двигателя благодаря наличию большого количества поворотных направляющих аппаратов.

Недостатком такого компрессора является низкий КПД из-за утечек сжимаемого воздуха по зазорам в поворотных направляющих аппаратах.

Техническая задача, на решение которой направлено заявляемое изобретение, заключается в повышении КПД за счет регулирования радиальных зазоров между статором и ротором без использования дополнительных систем управления и исполнительных механизмов.

Сущность технического решения заключается в том, что в высоконапорном многоступенчатом компрессоре, включающем ступени компрессора с поворотными направляющими лопатками и последующие за ними ступени с фиксированными направляющими аппаратами, согласно изобретению, проточная часть n-ой ступени компрессора с фиксированными направляющими аппаратами соединена каналами с полостью обдува внутреннего корпуса последних ступеней компрессора, число которых определяют из соотношения: Z/Z 1=2,0-4,0,

причем n=m+(1...3), где:

m - число ступеней компрессора с поворотными направляющими аппаратами;

Z - общее число ступеней компрессора;

Z 1 - число последних ступеней компрессора с регулируемым радиальным зазором между статором и ротором.

В современных высокотемпературных многоступенчатых компрессорах рабочие и направляющие лопатки последних ступеней вследствие большой степени сжатия выполняются малой высоты, поэтому увеличение радиальных зазоров между статором и ротором существенно ухудшает КПД компрессора. Для повышения КПД компрессора применяется управление радиальными зазорами путем обдува холодным воздухом на основных режимах работы внутреннего корпуса компрессора, что приводит к уменьшению радиальных зазоров между статором и ротором и, следовательно, к повышению КПД.

На переходных низких режимах работы компрессора для исключения задевания ротора о статор и заклинивания ротора компрессора охлаждающий воздух отключают, для чего в каналах подачи охлаждающего воздуха предусмотрены заслонки, регулирующие расход охлаждающего воздуха. Заслонки приводятся в действие исполнительными механизмами, которые получают сигналы на срабатывание от системы управления газотурбинного двигателя. Такая система является дорогой, сложной и поэтому ненадежной.

В современных высокотемпературных многоступенчатых компрессорах, первые ступени со стороны входа в которых выполняются высоконапорными и с поворотными направляющими аппаратами, на пониженных переходных режимах для обеспечения необходимых запасов газодинамической устойчивости поворотные аппараты «прикрываются», что приводит к появлению нерасчетных углов атаки потоков воздуха на рабочие лопатки и работе первых ступеней компрессора в турбинном режиме, т.е. со снижением давления воздуха на выходе из этих ступеней по сравнению с давлением воздуха на входе в компрессор, например, с атмосферным давлением.

На последующих ступенях компрессора с фиксированными направляющими аппаратами давление воздуха повышается, достигая давления на входе в компрессор с дальнейшим постоянным ростом.

С переходом на основные режимы работы компрессора поворотные аппараты «раскрываются», и первые ступени компрессора начинают работать в компрессорном режиме, сжимая воздух.

Такая особенность высоконапорного многоступенчатого компрессора позволяет выполнить обдув внутреннего корпуса компрессора, последних его ступеней, холодным воздухом для регулирования радиальных зазоров между статором и ротором без регулирующих заслонок, исполнительных механизмов и системы управления, соединив каналами проточную часть одной из ступеней компрессора с фиксированным направляющими аппаратами, в которой давление воздуха на переходных режимах равно давлению воздуха на входе в компрессор (например, равно атмосферному), с полостью обдува внутреннего корпуса последних ступеней компрессора.

В этом случае на переходных режимах работы компрессора вследствие работы первых ступеней с поворотными направляющими аппаратами в газотурбинном режиме охлаждающий воздух в полость обдува внутреннего корпуса компрессора не поступает, и зазоры между статором и ротором максимальны. При переходе на основные режимы работы после открытия поворотных направляющих аппаратов давление воздуха за ними возрастает, охлаждающий воздух начинает поступать в систему обдува внутреннего корпуса, что приводит к уменьшению радиальных зазоров между ротором и статором по последним ступеням и повышению КПД компрессора.

Номер n-ной от входа ступени компрессора, откуда осуществляется отбор охлаждающего воздуха, выбран с учетом того, чтобы на низких режимах работы компрессора (на малом газе) не происходило обратного течения охлаждающего воздуха, вызывающего помпаж компрессора.

При n<(m+1) давление воздуха в проточной части в месте его отбора будет ниже давления воздуха в системе обдува, что может привести к течению воздуха из системы обдува в проточную часть компрессора, развитию срывных течений на лопатках и помпажу компрессора. При n>(m+3) возрастает давление и температура отбираемого на охлаждение воздуха на основных режимах работы компрессора, что ухудшает КПД компрессора.

В случае, когда Z/Z1<2,0, излишне снижается разница температур (температурный напор) между охлаждающим воздухом и температурой внутреннего корпуса, что снижает эффективность системы регулирования радиальных зазоров и КПД компрессора, а при Z/Z 1>4 снижается количество ступеней компрессора с регулированием радиальных зазоров между ротором и статором, что также снижает КПД компрессора.

На фиг.1 представлен продольный разрез высоконапорного многоступенчатого компрессора газотурбинного двигателя заявляемой конструкции. На фиг.2 показан элемент I на фиг.1 в увеличенном виде, на фиг.3 - элемент II на фиг.1 в увеличенном виде.

Высоконапорный многоступенчатый компрессор 1 газотурбинного двигателя состоит из ротора 2, установленного на переднем 3 радиальном и заднем 4 радиально-упорном подшипниках, а также из статора 5, в переднем корпусе 6 которого со стороны входа 7 в компрессор 1 установлены входной поворотный направляющий аппарат 8 и поворотные направляющие аппараты первой и второй ступеней 9 и 10 соответственно. Направляющий аппарат 11 третьей ступени, а также направляющие аппараты последующих ступеней выполнены фиксированными, причем направляющие аппараты 12 последних ступеней 13 компрессора 1 установлены во внутреннем корпусе 14, отделенном от наружного корпуса 15 перфорированным дефлектором 16 и образующим с наружным корпусом 15 кольцевую замкнутую полость 17 обдува охлаждающим воздухом 18.

Для исключения термических напряжений внутренний 14 и наружный 15 корпусы соединены между собой передним и задним упругими элементами 19 и 20. Для сброса отработанного охлаждающего воздуха 18 в атмосферу 21 в наружном корпусе 15 выполнены отверстия 22.

Охлаждающий воздух 18 поступает в полость 17 по каналам 23 из полости отбора воздуха 24, соединенную отверстиями 25 в фиксированном спрямляющем аппарате 26 четвертой ступени с проточной частью 27 аппарата 26.

Так как при сжатии воздуха его температура повышается, для обеспечения необходимых запасов прочности диски 28 последних ступеней компрессора 1 выполняются с увеличенной толщиной.

Работает данное устройство следующим образом.

При работе высоконапорного многоступенчатого компрессора 1 на основных режимах охлаждающий воздух 18 из проточной части 27 направляющего аппарата 26 с фиксированными лопатками через отверстия 25 и полость отбора 24 по каналам 23 поступает в полость обдува 17, откуда через перфорированный дефлектор 16 струями натекает на внутренний корпус 14, соединенный с наружным корпусом 15 упругими элементами 19 и 20. За счет снижения температуры и температурной деформации корпуса 14 радиальные зазоры между статором 5 и ротором 2 по последним ступеням 13 компрессора 1 уменьшаются. Отработанный охлаждающий воздух 18 через отверстия 22 в наружном корпусе 15 сбрасывается в атмосферу 21.

При снижении режимов работы двигателя тонкостенный внутренний корпус 14 охлаждается быстрее массивных утолщенных дисков 28 последних ступеней, что могло бы привести к уменьшению радиальных зазоров между ротором 2 и статором 5 до нуля и заклиниванию ротора. Однако этого не происходит, так как для обеспечения необходимых запасов газодинамической устойчивости поворотные направляющие аппараты 8, 9 и 10 на входе 7 в компрессор 1 прикрываются, что приводит к падению давления воздуха 18 в полости отбора 24, снижению интенсивности охлаждения внутреннего корпуса 14 и увеличению радиальных зазоров между статором 5 и ротором 2 по последним ступеням 13 компрессора 1.

Таким образом осуществляется авторегулирование радиальных зазоров между статором 5 и ротором 2 последних ступеней компрессора без применения исполнительных механизмов и системы управления.

Номер n-ой от входа ступени компрессора, откуда осуществляется отбор охлаждающего воздуха, выбран с учетом того, чтобы на низких режимах работы компрессора 1, например на малом газе, не происходило обратного течения охлаждающего воздуха 18, т.е. через отверстия 22 и каналы 23, в проточную часть 27 спрямляющего аппарата 26, что может вызвать помпаж компрессора 1.

Одновременно, для осуществления эффективного регулирования, должен сохраняться достаточный температурный напор между отбираемым охлаждающим воздухом и температурой внутреннего корпуса 14.

Класс F04D29/00 Конструктивные элементы, узлы и вспомогательные устройства

способ повышения эффективности работы осевого многоступенчатого компрессора -  патент 2529289 (27.09.2014)
лопатка осевого компрессора -  патент 2529272 (27.09.2014)
уплонительное устройство низких ступеней компрессора -  патент 2529050 (27.09.2014)
садовый насос с устройством для хранения труб -  патент 2528546 (20.09.2014)
турбинный двигатель летательного аппарата, его модуль, часть статора для такого модуля, а также кольцо для такого статора -  патент 2527809 (10.09.2014)
турбонасосный агрегат жрд -  патент 2526996 (27.08.2014)
многоступенчатый компрессор турбомашины -  патент 2525997 (20.08.2014)
ротор вентилятора турбореактивного двигателя самолета -  патент 2525817 (20.08.2014)
направляющий аппарат ступени центробежного многоступенчатого насоса -  патент 2525816 (20.08.2014)
турбонасосный агрегат жрд -  патент 2525775 (20.08.2014)
Наверх