способ получения абразивных микропорошков на основе корунда

Классы МПК:C01F7/02 оксид алюминия; гидроксид алюминия; алюминаты 
C09K3/14 материалы, препятствующие скольжению; абразивы
C09C1/68 рыхлые абразивные наполнители 
Автор(ы):, , ,
Патентообладатель(и):Толчев Александр Васильевич (RU)
Приоритеты:
подача заявки:
2005-02-07
публикация патента:

Изобретение относится к абразивным микропорошкам на основе оксида алюминия, используемым для полирования, шлифования и окончательной доводки поверхности высокоточных изделий из металла, стекла и камня. Способ получения абразивных микропорошков на основе корунда включает смешивание гидроксида алюминия с добавкой затравочных кристаллов и его последующую термопаровую обработку при давлении 30-400 атм и температуре 340-450°С. В гидроксид алюминия вместе с затравочными кристаллами вводят пассификатор роста кристаллов корунда в виде оксидных соединений фосфора или кремния в количестве 0,001-0,1 мас.% в пересчете на оксид фосфора или оксид кремния к Al2О3. В качестве затравочных кристаллов используют мелкокристаллический способ получения абразивных микропорошков на основе корунда, патент № 2321542 - оксид железа (III) или оксигидроксиды железа (III) в количестве 0,0005-0,3 мас.% к Al2O 3. В качестве оксидных соединений фосфора или кремния - пассификаторов роста кристаллов корунда - используют фосфорную кислоту, полифосфаты натрия, силикаты натрия или калия. Изобретение позволяет получить монодисперсный продукт с узким распределением кристаллов по размерам. 1 табл.

Формула изобретения

1. Способ получения абразивных микропорошков на основе корунда, включающий смешивание гидроксида алюминия с добавкой затравочных кристаллов и его последующую термопаровую обработку при давлении 30-400 атм, отличающийся тем, что при смешивании в гидроксид алюминия вместе с затравочными кристаллами вводят пассификатор роста кристаллов корунда в виде оксидных соединений фосфора или кремния в количестве 0,001-0,1 мас.% в пересчете на оксид фосфора или оксид кремния к Al2О 3, а в качестве затравочных кристаллов используют мелкокристаллический способ получения абразивных микропорошков на основе корунда, патент № 2321542 - оксид железа (III) или оксигидроксиды железа (III) в количестве 0,0005-0,3 мас.% к Al2О 3, причем термопаровую обработку проводят при температурах 340-450°С.

2. Способ по п.1, отличающийся тем, что в качестве оксидных соединений фосфора или кремния - пассификаторов роста кристаллов корунда используют фосфорную кислоту, полифосфаты натрия, силикаты натрия или калия.

Описание изобретения к патенту

Изобретение относится к абразивным микропорошкам на основе оксида алюминия, используемым для шлифования, полирования и окончательной доводки поверхности высокоточных изделий из металла, стекла и камня, с целью придания им минимальной шероховатости поверхности и достижения высших классов точности размеров и геометрических форм.

Известен способ получения абразивного микропорошка для полирования на основе оксидов алюминия и железа состава, мас.%: Al2О3 - 90,0-99,9; Fe2O3 - 10,0-0,1, который включает стадии приготовления шихты из гидроксида алюминия, в частности гидраргиллита и железосодержащего сырья, механохимическую активацию шихты и ее последующую прокалку при 900-1300°С (см. патент России №2109026, М. кл. 6 C09G 1/02, C21D 6/00 от 20.04.1998).

Недостатками известного способа являются: а) высокая энергоемкость стадии прокалки, которую проводят при 900-1300°С; б) наличие газообразных выбросов и пылеунос продукта (до 5 мас.%) при прокалке; в) узкий диапазон размеров частиц готового продукта (от 0,3 до 2 мкм), что сужает области его применения.

Наиболее близким является способ получения мелкокристаллического корунда по патенту России №2093464, М. кл. 6 C01F 7/02 от 22.05.1996 г., согласно которому целевой продукт получают путем смешивания гидроксида алюминия с добавкой 1-20 мас.% затравочных кристаллов в виде механически активированного оксида алюминия или мелкокристаллического корунда, с последующей термопаровой обработкой смеси при температуре 350-400°С и давлении 30-400 атм.

Недостатком прототипа является полидисперсность целевого продукта на основе корунда (по данным таблиц 1-3 этого патента отношение максимального и минимального размеров кристаллов корунда лежит в широких пределах от 2 до 10, что по величине существенно больше такового отношения для размеров зерна абразивных микропорошков, предусмотренных ГОСТом 3647-80 "Материалы шлифовальные. Классификация. Зернистость и зерновой состав. Методы контроля"). Поэтому для получения абразивных микропорошков способом по прототипу необходимы дополнительные операции репульпации, классификации, фильтрации и сушки, приводящие к возрастанию себестоимости продукции.

Техническим результатом изобретения является снижение полидисперсности микропорошков на основе корунда, получение монодисперсного продукта с узким распределением кристаллов по размерам.

Технический результат достигается тем, что способ получения абразивных микропорошков на основе корунда, включает смешивание гидроксида алюминия с добавкой затравочных кристаллов и его последующую термопаровую обработку при давлении 30-400 атм, при этом при смешивании в гидроксид алюминия вместе с затравочными кристаллами вводят пассификатор роста кристаллов корунда в виде оксидных соединений фосфора или кремния в количестве 0,001-0,1 мас.% в пересчете на оксид фосфора или оксид кремния к Al 2О3, а в качестве затравочных кристаллов используют мелкокристаллический способ получения абразивных микропорошков на основе корунда, патент № 2321542 - оксид железа (III) или оксигидроксиды железа (III) в количестве 0,0005-0,3 мас.% к Al2O 3, причем термопаровую обработку проводят при температурах 340-450°С.

Кроме того, в качестве оксидных соединений фосфора или кремния - пассификаторов роста кристаллов корунда - используют фосфорную кислоту, полифосфаты натрия, силикаты натрия или калия.

Проведенные исследования показали: а) при проведении термообработки гидроксида алюминия, например гидраргиллита, в замкнутом объеме, например в автоклаве, в условиях высоких (более 40 атм) парциальных давлений паров воды, которая, например, выделяется при дегидратации гидроксида алюминия согласно реакции:

2Al(ОН)3способ получения абразивных микропорошков на основе корунда, патент № 2321542 Al2O3+3H 2Oспособ получения абразивных микропорошков на основе корунда, патент № 2321542 ,

нижняя температурная граница образования корунда по сравнению с прокалкой на воздухе (не менее 900°С) снижается до 375°С; б) формирование корунда при термообработке гидраргиллита, в замкнутом объеме в условиях высоких парциальных давлений паров воды протекает по механизму "растворения-осаждения" путем растворения кристаллов гидроксида алюминия, переноса через дисперсионную среду (пары воды) кристаллообразующего вещества к образовавшимся зародышам корунда и встраивания его в поверхностный слой кристалла. Лимитирующей стадией этого процесса может выступать как стадия образования зародышей равновесной фазы, так и массопереноса кристаллообразующего вещества к зародышам. Нами показано, что при механизме "растворения-осаждения" полидисперсная фаза формируется лишь в том случае, если процесс лимитируется зародышеобразованием. В этом случае зародыши новой фазы возникают в разные моменты времени, а при их последующем росте формируются кристаллы разного размера. Поэтому для получения корунда с узким распределением кристаллов по размерам необходимо, с одной стороны, понизить работу зародышеобразования, что достигается, например, путем введения затравочных кристаллов, а с другой - ввести в реакционную среду добавки, пассивирующие рост кристаллов корунда; в) установлено, что мелкокристаллический способ получения абразивных микропорошков на основе корунда, патент № 2321542 -Fe2O3 с размером кристаллов менее 0,05 мкм1 ( 1Порошки способ получения абразивных микропорошков на основе корунда, патент № 2321542 -Fe2О3 с размером кристаллов более 0,05 мкм обладают низкой реакционной способностью и практически не влияют на кинетику формирования и дисперсный состав корунда, образующегося при термопаровой обработке гидроксида алюминия) и еще в большей степени оксигидроксиды железа (III) способ получения абразивных микропорошков на основе корунда, патент № 2321542 -, способ получения абразивных микропорошков на основе корунда, патент № 2321542 - или способ получения абразивных микропорошков на основе корунда, патент № 2321542 - модификаций, которые в процессе термообработки испытывают превращения в способ получения абразивных микропорошков на основе корунда, патент № 2321542 -F2О3, являются эффективными заправочными кристаллами. При их введении в гидроксид алюминия температура начала образования корунда понижается до 340°С, исключается латентный период стадии зародышеобразования, уменьшается полидисперсность конечного продукта. Однако полученные при этом образцы корунда содержали единичные крупные кристаллы, что свидетельствует о необходимости введения в реакционную среду, наряду с затравочными кристаллами, и добавок, пассивирующих рост кристаллов корунда. Использование в качестве таких добавок оксидных соединений фосфора или кремния (фосфорная кислота, полифосфаты натрия, силикаты натрия или калия и др.) позволило исключить образование грубой фракции. Путем варьирования количества вводимых в гидроксид алюминия затравочных кристаллов и оксидных соединений фосфора или кремния можно варьировать средний размер близких к монодисперсным микропорошков на основе корунда от 1 до 100 мкм.

При введении затравочных кристаллов менее 0,0001 мас.% к Al2О3 при термопаровой обработке формируется полидисперсный продукт, а при введении затравочных кристаллов более 0,3 мас.% образуется корунд со средним размером кристаллов менее 1 мкм.

При введении добавки пассификатора роста кристаллов менее 0,0005 мас.% в пересчете на оксид фосфора или на оксид кремния к Al2O 3 в конечном продукте присутствует небольшое количество (до 5 мас.%) грубой фракции, а при введении этой добавки более 0,1 мас.% протекает агрегация кристаллов корунда с образованием полидисперсного продукта.

Нижний предел температуры термопаровой обработки (340°С) обусловлен резким торможением процесса формирования корунда при более низких температурах, использование температур выше 450°С (верхний предел) экономически нецелесообразно из-за высоких энергетических затрат.

Изобретение иллюстрируется следующими примерами.

Пример 1 (по прототипу). 400 г гидраргиллита, содержащего 263 г Al2О3 и 137 г Н2О, тщательно смешивают с 13 г Al2О3 марки "чда" (5 мас.% затравочных кристаллов) в шаровой мельнице. 300 г смеси помещают в автоклав объемом 0,5 дм3 и подвергают термообработке при температуре 400°С и давлении паров воды 250 атм в течение 2 ч. Получают 100% корунд с размером кристаллов от 40 до 90 мкм.

Пример 2 (по предлагаемому способу). 400 г гидраргиллита, содержащего 263 г Al2O 3 и 137 г H2O, тщательно смешивают с 0,8 г мелкокристаллического способ получения абразивных микропорошков на основе корунда, патент № 2321542 - оксида железа (III), полученного термообработкой способ получения абразивных микропорошков на основе корунда, патент № 2321542 -FeOOH в растворе FeSO4 (0,3 мас.% затравочных кристаллов к Al2О 3), и 0,36 г (в пересчете на 100%) фосфорной кислоты марки "хч" (0,1 мас.% Р2O 5 к Al2О3) в шаровой мельнице. Берут 300 г смеси, помещают в автоклав объемом 0,5 дм3 и подвергают термообработке при температуре 400°С и парциальном давлении паров воды 250 атм в течение 2 ч. Получают 100% корунд с размером кристаллов от 1 до 2 мкм.

Примеры 3-7 проводят аналогично примеру 2. При этом варьируют вид и количество вводимых затравочных кристаллов и добавки пассификатора роста кристаллов. Конкретные параметры процесса синтеза и дисперсный состав микропорошков на основе корунда приведены в таблице.

Из таблицы видно, что предлагаемый способ получения абразивных микропорошков на основе корунда по сравнению с прототипом позволяет уменьшить диапазон разброса кристаллов корунда по размерам в 2-5 раз, что позволяет получать монодисперсные микропорошки на основе корунда с узким распределением кристаллов по размерам.

Таблица.

Параметры синтеза, состав и качественные показатели абразивных микропорошков
Параметры процесса и показатели микропорошка прототипПримеры по предлагаемому способу
1 234 567,8
1Вид затравочных кристаллов Al2О3 Fe2O 3FeOOHFeOOH FeOOHFeOOH FeOOH
2Массовая доля затравочных кристаллов, мас.%5,0 0,30,1 0,030,010,002 0,0005
3 Вид пассификатора роста кристаллов- Н3PO4 Силикат натрияПолифосфат натрияСиликат калия Н3РО4 Н3PO4
4Массовая доля пассификатора роста кристаллов, мас.% оксида фосфора или оксида кремния к Al 2O3- 0,10,050,01 0,0060,0030,001
5Температура термопаровой обработки, °С400 400340 400450450 450
6Диапазон размеров кристаллов микропорошка, мкм40-90 1-25-8 10-1530-4060-75 90-120

Класс C01F7/02 оксид алюминия; гидроксид алюминия; алюминаты 

способ получения альфа-фазы оксида алюминия -  патент 2528979 (20.09.2014)
корундовая микропленка и способ ее получения /варианты/ -  патент 2516823 (20.05.2014)
способ синтеза композиционного металлооксида и композиционный металлооксид, полученный этим способом -  патент 2515430 (10.05.2014)
способ получения металлургического глинозема с применением летучей золы, образующейся в кипящем слое -  патент 2510365 (27.03.2014)
способ получения гранулированного сорбента -  патент 2503619 (10.01.2014)
катализатор селективного гидрирования и способ его получения -  патент 2490060 (20.08.2013)
способ получения широкопористого гамма-оксида алюминия -  патент 2482061 (20.05.2013)
способ переработки красных шламов глиноземного производства -  патент 2480412 (27.04.2013)
способ получения активного оксида алюминия -  патент 2473468 (27.01.2013)
способ получения высокодисперсного гидроксида алюминия и оксида алюминия на его основе -  патент 2465205 (27.10.2012)

Класс C09K3/14 материалы, препятствующие скольжению; абразивы

Класс C09C1/68 рыхлые абразивные наполнители 

Наверх