способ калибровки преобразователей акустической эмиссии и устройство для его реализации
Классы МПК: | G01N29/04 анализ твердых тел G01N29/30 устройства для калибровки или сравнения, например со стандартными объектами |
Автор(ы): | Владимиров Борис Георгиевич (RU), Желкобаев Жумабек (RU), Календин Владимир Валерьянович (RU), Несмеянов Сергей Сергеевич (RU), Тодуа Павел Андреевич (RU) |
Патентообладатель(и): | Открытое акционерное общество Научно-исследовательский центр по изучению свойств поверхности и вакуума (НИЦПВ) (RU) |
Приоритеты: |
подача заявки:
2005-04-14 публикация патента:
10.04.2008 |
Использование: для калибровки преобразователей акустической эмиссии. Сущность: с помощью оптического интерференционного измерителя линейных перемещений выполняется калибровка системы, состоящей из источника акустического сигнала и монолитного передающего блока, после чего в акустический контакт с монолитным передающим блоком вводится стандартный преобразователь акустической эмиссии, обрабатывается и запоминается сигнал от этого преобразователя акустической эмиссии, затем устанавливается калибруемый преобразователь акустической эмиссии на место стандартного, записывается и обрабатывается второй сигнал в компьютере, который сравнивается с сохраненным эталонным, производя таким образом калибровку калибруемого преобразователя акустической эмиссии. Технический результат: повышение точности калибровки и расширение функциональных возможностей системы в целом. 2 н.п. ф-лы, 2 ил.
Формула изобретения
1. Способ калибровки преобразователей акустической эмиссии, включающий в себя процесс приема тестового акустического сигнала от одного источника двумя преобразователями акустической эмиссии, стандартным и калибруемым, с последующей регистрацией полученных сигналов и их сравнением посредством компьютера, отличающийся тем, что с помощью оптического интерференционного измерителя линейных перемещений выполняется калибровка системы, состоящей из источника акустического сигнала и монолитного передающего блока, после чего в акустический контакт с монолитным передающим блоком вводится стандартный преобразователь акустической эмиссии, обрабатывается и запоминается сигнал от этого преобразователя акустической эмиссии, затем устанавливается калибруемый преобразователь акустической эмиссии на место стандартного, записывается и обрабатывается второй сигнал в компьютере, который сравнивается с сохраненным эталонным, производя таким образом калибровку калибруемого преобразователя акустической эмиссии.
2. Устройство для калибровки преобразователей акустической эмиссии, содержащее источник акустического сигнала, монолитный передающий блок, блок аналого-цифровых преобразователей, компьютер, а также преобразователь акустической эмиссии, вход которого через монолитный передающий блок соединен с источником акустического сигнала, а выход через блок аналого-цифровых преобразователей - с входом компьютера, отличающееся тем, что дополнительно содержит оптический интерференционный измеритель линейных перемещений, имеющий оптическую связь с монолитным передающим блоком и соединенный с блоком аналого-цифровых преобразователей, управляемый генератор, управляющий вход которого соединен с компьютером, а выход с входом излучателя акустических волн, а излучатель акустических волн выполнен в виде линейного электроакустического преобразователя.
Описание изобретения к патенту
Предложение относится к области измерительной техники, а более конкретно к метрологическому обеспечению калибровки преобразователей акустической эмиссии в процессе их аттестации. Оно может быть использовано также для проведения автоматического неразрушающего контроля продукции в процессе изготовления других акустических приборов, датчиков линейного перемещения, нанопозиционеров и подобного рода устройств.
Известны способы калибровки преобразователей акустической эмиссии, основанные на применении лазерных интерферометрических измерителей наноперемещений (см., например, Лазерные интерферометры для исследования распределения ультразвуковых колебаний в различных средах. Журнал "Автометрия", №3, 1999 г. стр.109-114). При этом сам преобразователь акустической эмиссии используется как активный элемент интерферометра, осуществляя роль подвижного элемента (зеркала) в информационном канале интерферометра-фазометра и калибруется абсолютно (в координатном пространстве "смещение-частота"). Однако такое техническое решение характерно штучными операциями с объектом калибровки и поэтому не может обеспечить поточную калибровку многих преобразователей, что не удовлетворяет промышленным требованиям на производительность системы.
Ближайшим прототипом предложенному техническому решению является способ и устройство, предусмотренные Стандартом США "Е076-94". Они включают в себя процесс приема от одного источника двух тестовых акустических сигналов двумя преобразователями акустической эмиссии, стандартным и калибруемым, с последующей регистрацией полученных сигналов и их сравнением посредством компьютера. Здесь устройство для калибровки преобразователей акустической эмиссии, содержит источник акустического сигнала, монолитный передающий блок, блок аналого-цифровых преобразователей, компьютер, а также калибруемый преобразователь акустической эмиссии, вход которого через монолитный передающий блок соединен с источником акустического сигнала, а выход через блок аналого-цифровых преобразователей - с входом компьютера.
Недостатком известного технического решения является низкая точность измерительных процессов при калибровке, обусловленная нестабильностью характеристик источника акустического сигнала, и ограниченные функциональные возможности при смене типа преобразователя акустической эмиссии.
Целью предложения является повышение точности калибровки и расширение функциональных возможностей системы в целом.
Поставленная цель достигается тем, что тестовый акустический сигнал периодически калибруется оптическими интерферометрическими средствами путем измерения временной зависимости абсолютного линейного смещения, а сигнал от калибруемого акустического преобразователя акустической эмиссии сравнивается с эталонным сигналом, зарегистрированным от стандартного преобразователя акустической эмиссии в измерениях, проведенных ранее.
Поставленная цель достигается также тем, что устройство дополнительно содержит оптический интерференционный измеритель линейных перемещений, имеющий оптическую связь с монолитным передающим блоком, и управляемый генератор, управляющий вход которого соединен с компьютером, а выход - с входом излучателя акустических волн, а излучатель акустических волн выполнен в виде линейного электроакустического преобразователя.
Оптический интерференционный измеритель линейных перемещений может содержать последовательно соединенные по сигналу лазер, блок оптических модуляторов, интерферометр, который дополнительно оптически связан с монолитным передающим блоком, и фотоприемное устройство, подключенное к блоку аналого-цифровых преобразователей, а также генератор разностной частоты, соединенный с блоком оптических модуляторов и с блоком аналого-цифровых преобразователей.
Устройство может содержать регистрирующее устройство, подключенное к выходу компьютера.
На Фиг.1 представлено устройство-прототип по Стандарту США "Е076-94" (Здесь полностью сохранена Fig.1 Стандарта США, где даны все обозначения, содержащиеся в исходном документе).
На Фиг.2 представлено предложенное устройство для калибровки преобразователей акустической эмиссии.
Представленное на Фиг.1 согласно Стандарту США "Е076-94" устройство в обозначениях подлинника содержит монолитный передающий блок А, с которым контактирует источник акустического сигнала, выполненный в виде разрушаемого капилляра В, прижатого к монолитному передающему блоку А винтом D и диском С. С диском D соединены усилитель Е и осциллограф F. Стандартный преобразователь акустической эмиссии G и калибруемый преобразователь акустической эмиссии Н соединены с монолитным передающим блоком А непосредственно, а через блоки аналого-цифровых преобразователей I - с компьютером J.
Представленное на Фиг.2 предложенное устройство содержит источник акустического сигнала 1, с которым контактируют монолитный передающий блок 2. Блок аналого-цифровых преобразователей 3 соединен с компьютером 4. К входу блока аналого-цифровых преобразователей 3 подключен выход калибруемого преобразователя акустической эмиссии 5. С монолитным передающим блоком 2 и блоком аналого-цифровых преобразователей 3 соединен оптический интерференционный измеритель линейных перемещений 6, а между выходом компьютера 4 и входом источника акустического сигнала 1 установлен управляемый генератор 7. Оптический интерференционный измеритель линейных перемещений 6 включает в себя последовательно соединенные по сигналу лазер 8, блок оптических модуляторов 9, интерферометр 10, который дополнительно оптически связан с монолитным передающим блоком 2, и фотоприемное устройство 11, подключенное к блоку аналого-цифровых преобразователей 3, а также генератор разностной частоты 12, соединенный с блоком оптических модуляторов 9 и с блоком аналого-цифровых преобразователей 3. К выходу компьютера 4 подключено регистрирующее устройство 13.
Предложенный способ калибровки преобразователей акустической эмиссии предусматривает в три этапа три режима работы устройства. Реализуются они следующим образом. В начале работы при замене источника акустического сигнала 1 или при его периодической поверке в первую очередь с помощью оптического интерференционного измерителя линейных перемещений 6 выполняется калибровка системы, состоящей из источника акустического сигнала 1 и монолитного передающего блока 2. Производится это так: источник акустического сигнала 1 вводится в акустический контакт с монолитным передающим блока 2; по командам от компьютера 4 управляемый генератор 7 изменяет частоту источника акустического сигнала 1 в заданном диапазоне; с помощью оптического интерференционного измерителя линейных перемещений 6 в реальном масштабе времени измеряются перемещения поверхности монолитным передающим блока 2 и производится калибровка источника акустического сигнала 1. Измеритель линейных перемещений 6 собран по упрощенной схеме и работает следующим образом. Оптический сигнал от лазера 8, промодулированный блоком оптических модуляторов 9 с разностной частотой, заданной от генератора разностной частоты 12, подается на интерферометр 10, который имеет оптическую связь с монолитным передающим блоком 2, фотоприемное устройство 11 регистрирует сигнал, фазовый сдвиг которого относительно опорного сигнала от генератора разностной частоты 12 пропорционален линейному смещению поверхности монолитного передающего блока 2; блок аналого-цифровых преобразователей 3 передает эту информацию в компьютер 4. Если характеристики системы находятся в норме, то производится переход к третьему этапу работы устройства. При этом в акустический контакт с монолитным передающим блоком 2 вводится стандартный преобразователь акустической эмиссии 5. Затем обрабатывается и запоминается сигнал от этого преобразователя акустической эмиссии. На этом второй этап заканчивается и устройство приводится в рабочий режим. После установки калибруемого преобразователя акустической эмиссии 5 на место стандартного записывается и обрабатывается второй сигнал в компьютере, который сравнивается с сохраненным эталонным. Таким образом, производится калибровка калибруемого преобразователя акустической эмиссии. Этот последний этап может быть выполнен поточным образом множество раз с однотипными преобразователя акустической эмиссии, не меняя настройки устройства до смены типа преобразователя или наступления времени регламентных работ.
Таким образом, по сравнению с устройством-прототипом предложение существенно повышает точность калибровки преобразователей акустической эмиссии и расширяет функциональные возможности всей измерительной системы в целом, что приводит к достижению поставленной цели изобретения.
Класс G01N29/04 анализ твердых тел
Класс G01N29/30 устройства для калибровки или сравнения, например со стандартными объектами