термопластическая формовочная композиция для получения полипропиленовых нитей
Классы МПК: | D01F6/06 из полипропилена D01F1/10 прочих веществ с целью получения волокон с модифицированными свойствами |
Автор(ы): | Мельник Ирина Анатолиевна (UA), Цебренко Мария Васильевна (UA), Резанова Виктория Георгиевна (UA), Цебренко Ирина Александровна (UA), Резанова Наталья Михайловна (UA), Горбик Петр Петрович (UA), Сапьяненко Александр Александрович (UA), Дзюбенко Лидия Степановна (UA) |
Патентообладатель(и): | Киевский национальный университет технологии и дизайна (UA) |
Приоритеты: |
подача заявки:
2006-11-03 публикация патента:
20.04.2008 |
Изобретение относится к технологии получения химических волокон, в частности полипропиленовых нитей, и изделий из них, например нетканых материалов для товаров народного потребления и предметов гигиены. Термопластичная формовочная композиция для получения указанных нитей содержит 97,00-99,95 масс.%, полипропилена и 0,05-3,0 масс.% добавки - углеродных нанотрубок. Полученные полипропиленовые нити обладают улучшенными гигиеническими свойствами. 1 табл.
Формула изобретения
Термопластичная формовочная композиция для получения полипропиленовых нитей, которая содержит полипропилен и добавку, отличающаяся тем, что в качестве добавки выбраны углеродные нанотрубки, при этом компоненты смеси взяты в следующем соотношении, мас.%:
Полипропилен | 97,00-99,95 |
Углеродные нанотрубки | 0,05-3,00 |
Описание изобретения к патенту
Изобретение относится к термопластичным формовочным композициям для получения полипропиленовых нитей и может быть использовано при производстве волокон, нитей и нетканых материалов для товаров народного потребления и предметов гигиены.
Известна композиция для получения полипропиленовых (ПП) нитей, описанная в способе получения ПП нитей в патенте Украины №11032, МПК D01F 8/00, 2005 г., которая содержит полипропилен и гидрофильные добавки - олеат натрия или аэросил.
Данная композиция содержит 0,1-5,0 масс.% добавки и обеспечивает повышение гидрофильности ПП нитей до 0,7-5,7%, но при этом их механические свойства остаются на уровне нитей из исходного ПП.
Известна также композиция для получения полипропиленовых нитей (Химические волока №1, 1999 г., стр.19), что содержит полипропилен и добавку. В качестве добавки выбран сополимер этилена с винилацетатом (СЭВА), при этом соотношение компонентов в смеси составляет, масс.%:
ПП | 80,0-90,0 |
СЭВА | 10,0-20,0 |
Наличие в полипропилене СЭВА обеспечивает получение нитей с прочностью 54 сН/текс против 37 сН/текс для нитей из исходного ПП. При этом введение в ПП значительного количества (10-20 масс.%) добавки приводит к появлению в модифицированных полипропиленовых нитях значительного количества ацетатных групп. Последние нестойки к высокой температуре, что ограничивает температуры переработки композиций ПП/СЭВА и эксплуатации нитей из их. Нити, сформованые из полипропилена с добавками СЭВА, как и нити из исходного ПП, плохо поглощают влагу (0,1%), то есть гидрофобны, что ухудшает гигиенические свойства изделий из их и ограничивает области применения.
В основу изобретения поставлена задача создать такую термопластичную формовочную композицию для получения полипропиленовых нитей, в которой путем изменения количественного и качественного состава ингредиентов обеспечилось бы улучшение гигиенических свойств полученных ПП нитей.
Поставленная задача решена тем, что в термопластичную формовочную композицию, которая содержит полипропилен и добавку в соответствии с изобретением в качестве добавки выбраны углеродные нанотрубки, при этом компоненты смеси взяты в таком соотношении, масс.%:
Полипропилен | 97,00-99,95 |
Углеродные нанотрубки | 0,05-3,00 |
Углеродные нанотрубки - это протяженные структуры (длиной 1-500 нм), которые состоят из гексагональных сеток с атомами углерода в узлах. Они характеризуются модулем упругости (500-5000 ГПа) и прочностью (10-500 ГПа) на уровне легированных сталей, а также высокой удельной поверхностью (до 1000 м2/г) (Успехи химии Т.167, №9, 1997 г., с.957). Благодаря перечисленным свойствам введение в полипропилен углеродных нанотрубок позволяет получить полипропиленовые нити с повышенными прочностью и равновесным влагопоглощением (гигроскопичностью). При этом прочность нитей возрастает до 59 сН/текс, а гигроскопичность составляет 1,0-1,5%, что расширяет сырьевую базу текстильной промышленности и ассортимент товаров народного потребления, а также повышает их качество.
Суть предложенного изобретения состоит в следующем.
Полипропилен предварительно смешивают с углеродными нанотрубками в расплаве, что обеспечивает тонкое диспергирование добавки в расплаве ПП и гомогенное смешивание. При формовании нитей из указанной композиции добавка равномерно размещается в структуре нитей, нанотрубки ориентируются вдоль оси волокна, что обеспечивает возрастание прочности нитей. Развитая поверхность нанотрубок обуславливает резкое возрастание гидрофильности нитей. В сравнении с нитями ближайшего аналога нити, полученные из данной композиции, характеризуются высокой гигроскопичностью в сочетании с высокой прочностью.
Предварительное смешивание ПП с углеродными нанотрубками осуществляют на червячно-дисковом экструдере. Нанотрубки вводят в количестве 0,05-3,00 масс.%. При введении в ПП добавки меньше 0,05 масс.% эффект возрастания прочности проявляется слабо, имеет место неравномерность по ее длине за счет неравномерного распределения добавки по длине нити и незначительного количества нанотрубок в структуре нити. Малые количества добавки тяжело дозировать и равномерно смешивать с полимером в расплаве. Увеличение концентрации добавки выше 3,0 масс.% ухудшает механические свойства ПП нитей и является экономически нецелесообразным из-за высокой стоимости нанотрубок.
Из литературы не известно введение в расплав полипропилена углеродных нанотрубок для повышения прочности и гидрофильности ПП нитей.
Таким образом, из композиции, которая предлагается, получают полипропиленовые нити с гигроскопичностью в 10-15 раз выше нитей аналога и прочностью, близкой к прочности аналога.
Изобретение объясняется следующим примером.
Пример
Для формования полипропиленовой нити брали гранулы ПП со следующими свойствами: характеристическая вязкость в декалине при 135°С - 1,2; содержание атактической фракции - 5%; температура плавления - 169°С. В качестве добавки использовали углеродные нанотрубки с трехслойной структурой, которая представляет собою свернутый рулон с внешним диаметром 3-10 нм, длиной 30-40 нм; прочность и удельная поверхность составляли соответственно 250 ГПа и 244 м2/г. Полипропилен смешивали с нанотрубками в расплаве на червячно-дисковом экструдере марки ЛГП-25. Из полученной композиции на прядильной машине экструдерного типа формовали мононить и вытягивали при температуре 150°С с кратностью вытяжки 4-5. Гидрофильность оценивали весовым способом по стандартной методике. Прочность определяли на разрывной машине по стандартной методике.
Характеристики нитей, сформованных из композиций ПП/нанотрубки, приведенны в таблице.
Таблица Характеристики полипропиленовых нитей | ||
Содержание добавки, масс.% | Прочность, сН/текс | Гигроскопичность, % |
0,04 | 39 | 1,0 |
0,05 | 53 | 1,0 |
0,1 | 59 | 1,1 |
0,5 | 39 | 1,4 |
1,0 | 39 | 1,4 |
3,0 | 39 | 1,5 |
3,1 | 32 | 1,7 |
ближайший аналог | 54 | 0,1 |
содержание СЭВА масс.10% |
Анализ результатов, приведенных в таблице, свидетельствует, что предложенная термопластичная формовочная композиция дает возможность получать полипропиленовые нити с высокой гидрофильностью (1,0-1,5%), то есть в 10-15 раз большей по сравнению с аналогом, в сочетании с повышенной прочностью (59 сН/текс).
Класс D01F6/06 из полипропилена
Класс D01F1/10 прочих веществ с целью получения волокон с модифицированными свойствами