способ отделения дифениламина от примесей

Классы МПК:C06B21/00 Способы или устройства для обработки взрывчатых веществ, например формование, резка, сушка
C07C209/84 очистка
Автор(ы):, , , ,
Патентообладатель(и):Федеральное государственное унитарное предприятие "Научно-исследовательский институт полимерных материалов" (RU),
Федеральное казенное предприятие "Пермский пороховой завод" (RU)
Приоритеты:
подача заявки:
2006-11-02
публикация патента:

Изобретение относится к порохам и топливам на основе нитроглицерина и нитратов целлюлозы. Предложен способ отделения дифениламина (ДФА) от примесей, содержащих амины и его производные. ДФА обрабатывают изопропиловым спиртом в весовом соотношении 1:1,5...1,7 при нагревании до температуры 30...40°С, после чего проводят выдержку до полного растворения ДФА и высаживают ДФА водой при весовом соотношении изопропилового спирта к воде 1:4. Предложенный способ позволяет получать дифениламин, очищенный от сопутствующих примесей. Использование такого дифениламина в качестве стабилизатора в составе порохов и топлив позволяет снизить скорость газовыделения более чем в 1,5 раза. 2 табл.

Формула изобретения

Способ отделения дифениламина (ДФА) от примесей, содержащих амины и его производные, включающий обработку ДФА спиртом и нагрев, отличающийся тем, что ДФА обрабатывают изопропиловым спиртом в весовом соотношении 1:1,5...1,7 при нагревании до температуры 30...40°С, после чего проводят выдержку до полного растворения ДФА и высаживают ДФА водой при весовом соотношении изопропилового спирта к воде 1:4.

Описание изобретения к патенту

Данное изобретение относится к способу повышения термической стойкости топлив на основе нитроглицерина и нитратов целлюлозы, в том числе пироксилиновых порохов, обеспечивающим их эксплуатацию в климатических условиях бывшего СССР в пределах гарантийного срока хранения изделий.

Известен ряд стабилизаторов химической (термической) стойкости (СХС) для нитроглицеринсодержащих топлив, широко применяемых в настоящее время в промышленности, такие как централиты I и II, дифениламин, нитродифениламин, окись магния, аккордиты и т.д., которые используются самостоятельно или в сочетании, например централит и дифениламин, и обеспечивают минимальные гарантийные сроки хранения изделий в условиях эксплуатации на территории России.

Механизм стабилизации заключается в нейтрализации разрушающего действия кислых продуктов разложения топлива по мере их выделения. Известно, что основной причиной получения неудовлетворительной термической стойкости топлив является усугубляющее действие агрессивных примесей, содержащихся в компонентах топлива, на процесс разложения нитроэфиров. Поэтому, одним из основных путей повышения термической стойкости является подбор качественного состава СХС, в частности широко используемого в составах топлив СХС-дифениламина (ДФА). В соответствии с ГОСТ 194-80 на ДФА в числе примесей в нем содержится исключительно агрессивная к нитроэфирам примесь, оказывающая омыляющее действие на нитроэфиры - анилин. Присутствие анилина в ДФА способствует повышению скорости газовыделения пропорционально его количеству и, следовательно, снижению термической стойкости, и как следствие, снижению гарантийного срока хранения изделий.

Известно, что почти все ароматические амины нестойки, если они не абсолютно чистые. Они окрашиваются в разные цвета, вероятно, в результате реакции окисления по данным К.Вейганд "Методы эксперимента в органической химии", ч.2, М.: ИЛ., 1952, с.258.

Для удаления предполагаемых катализаторов окисления, которыми являются следы солей тяжелых металлов, амины обрабатывают особым способом, который предложен в статье A.Weissberger, E.Strasser, J.Prakt. chem., 1932, 135, 209. Согласно авторам амины растворяют в разбавленной соляной кислоте при 45...50°С с добавлением 5...10% хлористого олова с последующим пропусканием сероводорода до полного осаждения олова, затем осадок отфильтровывают, кипятят для удаления сероводорода из фильтрата.

Недостатком метода является дополнительная операция по растворению амина в кислоте с образованием соли - солянокислого амина.

Все это усложняет технологический процесс: сероводород приводит к коррозии аппаратуры, к загазованности окружающей среды.

Вид и количество примесей, снижающих химическую стабильность топлив, зависят от способа получения ДФА. В промышленности ДФА получают взаимодействием эквимолярных количеств анилина с гидрохлоридом анилина в присутствии катализатора (AlCl3, HCl, NH 4BF4 и др.) в автоклаве при температуре 300°С.

Известен также промышленный способ получения ДФА путем пропускания паров анилина через Al2 О3 при 400°С (Химическая энциклопедия", т.2. М., Сов. энциклопедия, 1990, с.182).

Недостатками перечисленных методов является присутствие побочных продуктов реакции в виде соли анилина С6Н 4NH2·HCl, а также следов катализаторов, которые снижают качество ДФА.

К недостатку следует отнести также работу под давлением при высокой температуре, что создает дополнительные сложности в работе.

В качестве наиболее близкого аналога принят способ очистки ароматических аминов по а.с. СССР SU 702004 С1, 05.12.1979, С08К 5/18 (2006.01). Согласно данному способу очищаемый амин измельчают, перемешивают с органическим растворителем, взятом в количестве 5-20 вес.%, при температуре, лежащей в интервале ниже температуры кипения используемого растворителя, такого как низший спирт, ацетон, бензол, толуол или хлороформ, с последующим испарением растворителя и механическим удалением образующегося верхнего слоя, обогащенного примесями.

Недостатком данного способа является дополнительная операция, связанная с измельчением амина, а этот процесс требует тщательной герметизации аппаратуры, поскольку ДФА относится к классу высокоопасных веществ. К отрицательному моменту процесса следует отнести использование таких растворителей как бензол и толуол, пары которых создают повышенную пожароопасность. Кроме того, испарение растворителя приводит к излишнему расходу растворителя и ухудшению экологической безопасности окружающей среды.

Технической задачей данного изобретения является способ отделения ДФА от примесей, содержащих амины и его производные, и повышение термической стойкости топлив, в которых используется ДФА, за счет снижения их скорости газовыделения.

Технический результат способа отделения ДФА от примесей, содержащих амины и его производные, включает обработку ДФА изопропиловым спиртом в весовом соотношении 1:1,5...1,7 при нагревании до температуры 30...40°С, после чего проводят выдержку до полного растворения ДФА и высаживают ДФА водой при весовом соотношении изопропилового спирта к воде 1:4.

Сущность предлагаемого изобретения заключается в отделении ДФА от сопутствующих его примесей, а именно анилина, солянокислого анилина и следов солей тяжелых металлов. Отделение ДФА проводят согласно следующему примеру.

Пример.

В четырехгорлую колбу, снабженную механической мешалкой, термометром, обратным холодильником и воронкой для дозирования, помещают ДФА и изопропиловый спирт в весовом соотношении 1:1,7. Включают мешалку и нагревают до температуры 35±5°С, выдерживают при температуре не выше 40°С до полного растворения ДФА. Далее раствор охлаждают до 30°С и постепенно и равномерно в раствор дозируют воду при интенсивном перемешивании в течение 30-40 минут. Весовое соотношение изопропилового спирта и воды составляет 1:4. Реакционную массу охлаждают до 15-20°С при постоянном перемешивании, выпавшие при этом кристаллы ДФА тщательно отфильтровывают на воронке и промывают водой в объемном соотношении 1:1. Отжатый продукт сушат при комнатной температуре до постоянного веса.

В табл.1 приведены примеры по отделению дифениламина от примесей, содержащих амины и его производные:

Таблица 1
№ пп.Соотношение ДФА:спирт (1:1,5...1,7), вес.ч.Температура нагревания, (35±5)°С Соотношение спирт:вода (1:4), вес.ч. Время растворения, мин
11:1,740 1430
21:1,7 3014 20
31:1,5 301 430
4 1:1,540 1425
51:1,6 3513 20
61:1,4 371 635
7 1:1,842 1525

Соотношение ДФА к спирту 1:1,7 и выше приводит к перерасходу изопропилового спирта, а ниже 1:1,5 способствует увеличению времени растворения. Температура нагрева выше 40°С способствует растворению нежелательных примесей, а ниже 35°С приводит к увеличению соотношения ДФА: спирт, что приводит к ухудшению качества очистки.

Оптимальное время, обеспечивающее полное растворение ДФА в изопропиловом спирте, составляет 30 мин.

Высаживание ДФА водой из спиртового раствора экономически целесообразно, поскольку ДФА в воде не растворяется, а спирт после перегонки используют для следующих опытов.

Полученный продукт ДФА представляет собой мелкие лепестки со слегка желтоватым оттенком, который не изменяется при длительном хранении и полностью соответствует по качеству "высший сорт".

Очищенный ДФА был опробован на составе баллиститного топлива и приведен в табл.2.

Таблица 2
ПоказателиБаллиститное топливо ПРИМЕРЫ
123
1. Содержание примесей в ДФА, % 0,08-0,10,050,02 Отсут.
2. Скорость газовыделения при температуре t = 100°С, см 3/г·час(1,05-1,28)·10 -10,940,75 0,7

Как видно из данных табл.2, очистка дифениламина от примесей снижает скорость газовыделения баллиститного топлива более чем в 1,5 раза, что приводит к увеличению термической стойкости топлив и, как следствие, к продлению срока хранения.

Класс C06B21/00 Способы или устройства для обработки взрывчатых веществ, например формование, резка, сушка

блочный метательный заряд (варианты) и способ его изготовления -  патент 2528984 (20.09.2014)
способ получения пироксилинового сферического пороха для 7,62 мм спортивного патрона -  патент 2527781 (10.09.2014)
способ получения сферического пороха для стрелкового спортивного оружия -  патент 2527233 (27.08.2014)
способ получения сферического пороха для стрелкового оружия -  патент 2525544 (20.08.2014)
способ изготовления смеси фракций окислителя из класса перхлоратов -  патент 2521584 (27.06.2014)
устройство для снаряжения боеприпасов порошкообразными взрывчатыми составами -  патент 2520585 (27.06.2014)
способ получения сферического пороха -  патент 2516516 (20.05.2014)
флегматизированное взрывчатое вещество и способ его сухой флегматизации -  патент 2514946 (10.05.2014)
способ получения дискообразного тонкосводного пороха -  патент 2512446 (10.04.2014)
способ получения сферического пороха для стрелкового оружия -  патент 2505513 (27.01.2014)

Класс C07C209/84 очистка

Наверх