способ получения высокоглиноземистого цемента
Классы МПК: | C04B7/32 глиноземистые цементы |
Автор(ы): | Сизяков Виктор Михайлович (RU), Бричкин Вячеслав Николаевич (RU), Корнеев Валентин Исаакович (RU), Сизякова Екатерина Викторовна (RU) |
Патентообладатель(и): | Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет)" (RU) |
Приоритеты: |
подача заявки:
2006-11-09 публикация патента:
27.05.2008 |
Изобретение относится к способу получения высокоглиноземистого цемента, в частности к их производству при комплексной переработке алюминийсодержащего сырья. Технический результат - уменьшение энергозатрат за счет снижения температуры и продолжительности спекания шихты. В способе получения высокоглиноземистого цемента, заключающемся в химическом осаждении известкового компонента из суспензии алюминатного раствора и извести, его совместном измельчении с глиноземсодержащим материалом с получением сырьевой смеси, ее обжиге и тонком измельчении продукта обжига - клинкера, известь предварительно гасят и классифицируют с выделением не менее 60 мас.% твердого вещества крупностью менее 50 мкм, в качестве глиноземсодержащего материала используют гидрооксид алюминия, а обжиг сырьевой смеси ведут при температуре 1280-1250°С в течение 0,5-1 часа. 1 табл.
Формула изобретения
Способ получения высокоглиноземистого цемента, заключающийся в химическом осаждении известкового компонента из суспензии алюминатного раствора и извести, его совместном измельчении с глиноземсодержащим материалом с получением сырьевой смеси, ее обжиге и тонком измельчении продукта обжига - клинкера, отличающийся тем, что известь предварительно гасят и классифицируют с выделением не менее 60 мас.% твердого вещества крупностью менее 50 мкм, в качестве глиноземсодержащего материала используют гидрооксид алюминия, а обжиг сырьевой смеси ведут при температуре 1280-1250°С в течение 0,5-1 ч.
Описание изобретения к патенту
Предлагаемое изобретение относится к технологии производства глиноземистых и высокоглиноземистых цементов, в частности к их производству при комплексной переработке алюминийсодержащего сырья.
Известны способы получения высокоглиноземистых цементов путем спекания известковосодержащего компонента с глиноземом (Кравченко И.В. и др. Химия и технология специальных цементов. М.: Стройиздат, 1979), которые базируются на высокотемпературном (выше 1450°С) спекании исходных материалов и характеризуются низкой реакционной способностью сырьевой смеси. Этот недостаток в определенной степени преодолен в способах получения высокоглиноземистого цемента (А.С. СССР №568611, - БИ №30, 1977; А.С. СССР №771041. - БИ - 1980. - №38), отличающихся тем, что в них используют химически осажденный известковый компонент с более высокой реакционной способностью. В то же время сохраняется недопустимо высокая температура спекания и длительность процесса. За прототип предлагаемого способа принят способ (А.С. СССР №771041. - БИ №30, 1980) получения высокоглиноземистого цемента путем спекания глинозема с известковым компонентом, отличающийся тем, что с целью повышения реакционной активности шихты известковый компонент получают осаждением из суспензии щелочно-алюминатного раствора и извести.
В прототипе за счет химического осаждения известкового компонента достигается увеличение реакционной активности шихты, что является условием снижения температуры спекания шихты до 1300-1400°С и продолжительности высокотемпературного синтеза до 2-4 ч.
Недостатками данного способа (прототипа) являются:
1) высокие удельные энергозатраты из-за высокой температуры спекания сырьевой смеси и большой длительности синтеза;
2) трудность реализации указанного температурного и временного режима при использовании стандартного технологического оборудования в производственных условиях.
Техническим результатом предлагаемого изобретения является дальнейшее совершенствование процесса синтеза высокоглиноземистого цемента, обеспечивающее уменьшение энергозатрат за счет снижения температуры и продолжительности спекания шихты, возможность использования стандартного технологического оборудования в производственных условиях.
Технический результат достигается за счет того, что в способе получения высокоглиноземистого цемента, заключающемся в химическом осаждении известкового компонента из суспензии алюминатного раствора и извести, с получением сырьевой смеси, ее обжиге и тонким измельчении полученного при обжиге продукта-клинкера, отличающийся тем, что известь перед осаждением известкового компонента предварительно гасят и классифицируют с выделением не менее 60% масс. твердого вещества крупностью менее 50 мкм, в качестве глиноземсодержащего материала используют гидрооксид алюминия, а обжиг сырьевой смеси ведут при температуре 1280-1250°С в течение 0,5-1 часа.
Повышение реакционной активности известкового компонента достигается за счет увеличения его поверхности и степени дефектности кристаллической структуры как результата высокой скорости взаимодействия тонких фракций известковой пульпы и алюминатного раствора. Показателями происходящих изменений является рост удельной поверхности известкового компонента с 20,0 до 35-38 м2/г и снижение его термической устойчивости по данным дифференциально-термического анализа с 900 до 840°С. Повышение активности глиноземсодержащего компонента обеспечивается однократным нагревом материала, что уменьшает его перекристаллизацию с укрупнением в отличие от повторного нагрева глинозема в составе шихты (согласно прототипу), вызывающего развитие этих нежелательных процессов. Тем самым сохраняется наименьшая крупность и высокая удельная поверхность глиноземистого компонента, что является залогом его высокой реакционной способности при последующем обжиге с известковым компонентом. В результате установленного изменения свойств и природы компонентов сырьевой смеси интенсифицируются гетерогенные химические взаимодействия на поверхности раздела фаз, способствующие более раннему развитию процессов спекообразования и ускоренному формированию основных клинкерных минералов.
Способ осуществляется следующим образом. Известь после гашения водой или технологическими промывными водами подвергают классификации с выделением материала, содержащего 60 мас.% твердого с размером частиц менее 50 мкм. Полученный материал добавляют к щелочно-алюминатному раствору для осаждения известкового компонента. Затем образовавшийся осадок отделяют от алюминатного раствора и подвергают промывке. Полученный в результате промывки известковый компонент измельчают совместно с гидроксидом алюминия. Образующуюся при этом сырьевую смесь подвергают обжигу при температуре 1280-1250°С в течение 0,5-1 часа с последующим тонким размолом высокоглиноземистого клинкера до удельной поверхности 3000 см2 /г.
Пример 1. Известковую пульпу (известковое молоко) с концентрацией около 200 г/л активного оксида кальция после гашения извести подвергают гидроклассификации с выделением продукта (суспензии), содержащей в твердой фазе около 50% по массе частиц с крупностью менее 50 мкм. Полученную суспензию используют для осаждения известкового компонента путем взаимодействия с алюминатным раствором (согласно прототипу). Осадок отделяют от раствора и подвергают трехкратной противоточной промывке. Промытый известковый компонент подвергают совместному помолу с гидроксидом алюминия из расчета получения сырьевой смеси, отвечающей содержанию в клинкере 100% по массе двух фаз СаО·Al2О3 и СаО·2Al2О3 . Сырьевую смесь обжигают при температуре 1280°С в течение 1 часа. Полученные спеки размалывают до достижения удельной поверхности 3000 см2/г, затем анализируют на завершенность образования клинкерных минералов и выполняют физико-механические исследования для определения предела прочности при сжатии и сроков схватывания. Образец клинкера, полученного в указанных условиях, характеризуется неполным образованием конечных фаз (содержание СА+СА2 - 85 мас.%) и неудовлетворительными физико-механическими показателями.
Пример 2. Пример 2 аналогичен примеру 1: гидроклассификация известковой пульпы выполнялась с выделением суспензии, содержащей в твердой фазе 60 мас.% частиц с крупностью менее 50 мкм. Полученный клинкер отвечает 100%-ному завершению процессов клинкерообразования и удовлетворяет предъявляемым требованиям по физико-механическим показателям.
Пример 3. Пример 3 аналогичен примеру 1: гидроклассификация известковой пульпы выполнялась с выделением суспензии, содержащей в твердой фазе 70 мас.% частиц с крупностью менее 50 мкм. Обжиг сырьевой смеси проводили при температуре 1260°С в течение 0,8 часа. Полученный клинкер отвечает 100%-ному завершению процессов клинкерообразования и удовлетворяет предъявляемым требованиям по физико-механическим показателям.
Пример 4. Пример 4 аналогичен примеру 1: гидроклассификация известковой пульпы выполнялась с выделением суспензии, содержащей в твердой фазе более 80 мас.% частиц с крупностью менее 50 мкм. Обжиг сырьевой смеси проводили при температуре 1250°С в течение 0,5 часа. Полученный клинкер отвечает 100%-ному завершению процессов клинкерообразования и удовлетворяет предъявляемым требованиям по физико-механическим показателям.
Пример 5. Пример 5 аналогичен примеру 4: промытый известковый компонент подвергают совместному помолу с глиноземом. Клинкер, полученный после обжига сырьевой смеси, отвечает содержанию фаз СА+СА 2 - 82% и неудовлетворительным физико-механическим показателям.
Пример 6. Пример 6 аналогичен примеру 2: промытый известковый компонент подвергают совместному помолу с глиноземом. Клинкер, полученный после обжига сырьевой смеси, отвечает содержанию фаз СА+СА2 - 78,0% и неудовлетворительным физико-механическим показателям.
Результаты синтеза высокоглиноземистых цементов приведены в таблице.
Технический эффект предлагаемого изобретения:
1) снижение удельного расхода энергии за счет уменьшения температуры и длительности обжига, однократного высокотемпературного нагрева глиноземсодержащего компонента;
2) возможность длительной эксплуатации стандартного печного оборудования в установленном технологическом режиме.
Предлагаемый способ прошел полупромышленные испытания на Пикалевском глиноземном заводе ОАО Сибирско-Уральская алюминиевая компания. Ожидаемые результаты полностью подтвердились.
Таблица | |||||||
Условия синтеза известкового компонента, приготовления и обжига сырьевой смеси | Показатели синтеза высокоглиноземистых цементов | ||||||
№примера | Содержание фракции - 50 мкм в известковой пульпе, % | Глиноземистый компонент | Температура обжига, °С | Продолжительность обжига, час | Содержание в клинкере СА+СА2, % | Предел прочности при сжатии через трое суток, МПа | Сроки схватывания, час |
Прототип | <35 | оксид алюминия | 1300-1400 | 2-4 | 100,0 | 58,0 | 0,45-1,5 |
1 | 50 | гидроксид алюминия | 1280 | 1,0 | 85,0 | 51,0 | 1,0-2,1 |
2 | 60 | то же | 1280 | 1,0 | 100,0 | 58,0 | 0,5-1,5 |
3 | 70 | то же | 1260 | 0,8 | 100,0 | 60,0 | 0,5-1,4 |
4 | >80 | то же | 1250 | 0,5 | 100,0 | 61,0 | 0,5-1,2 |
5 | >80 | оксид алюминия | 1250 | 0,5 | 82,0 | 50,0 | 1,4-2,2 |
6 | 60 | то же | 1280 | 1,0 | 78,0 | 48,0 | 1,5-2,5 |
Класс C04B7/32 глиноземистые цементы