акустооптический приемник

Классы МПК:H04B10/06 приемники
H04J14/00 Оптические мультиплексные системы
Автор(ы):,
Патентообладатель(и):Военно-космическая академия имени А.Ф. Можайского (RU)
Приоритеты:
подача заявки:
2007-05-21
публикация патента:

Изобретение относится к области радиотехники и может использоваться для обнаружения выхода в эфир радиостанций с псевдослучайной перестройкой рабочей частоты (ППРЧ) и определения их сетки используемых частот. Техническим результатом является обеспечение возможности для одновременного и параллельного обнаружения и приема нескольких кратковременных сигналов, появляющихся на разных частотах и принадлежащих контролируемой радиостанции с псевдослучайной перестройкой рабочей частоты. Акустооптический приемник содержит приемную антенну (1), преобразователь (2) частоты, лазер (8), коллиматор (9), ячейку Брэгга (10), линзу (11), матрицу (12) фотодетекторов и блок (13) регистрации. Преобразователь (2) частоты выполнен многоканальным, состоящим из m строк и n столбцов. Каждая строка содержит узкополосный фильтр (3ij) и (n-1) звеньев, каждое из которых состоит из гетеродина (4ij), смесителя (5ij) и усилителя (6ij ) промежуточной частоты. Выходы усилителей промежуточной частоты (n-1)-го столбца через логический элемент ИЛИ (7) соединены с пьезоэлектрическим преобразователем ячейки Брэгга (10). 3 ил. акустооптический приемник, патент № 2329602

акустооптический приемник, патент № 2329602 акустооптический приемник, патент № 2329602 акустооптический приемник, патент № 2329602

Формула изобретения

Акустооптический приемник, содержащий лазер, на пути распространения пучка света которого последовательно установлены коллиматор и ячейка Брэгга, на пути распространения дифрагированной части пучка света установлена линза, в фокальной плоскости которой размещена матрица фотодетекторов, а также последовательно включенные приемную антенну и преобразователь частоты, отличающийся тем, что он снабжен блоком регистрации, подключенным к выходу матрицы фотодетекторов, а преобразователь частоты выполнен многоканальным, состоящим из m строк и n столбцов, причем каждая строка содержит последовательно подключенные к выходу приемной антенны узкополосный фильтр и (n-1) звеньев, каждое из которых состоит из последовательно включенных смесителя, второй вход которого соединен с выходом гетеродина, и усилителя промежуточной частоты, выходы усилителей промежуточной частоты (n-1)-го столбца через логический элемент или соединены с пьезоэлектрическим преобразователем ячейки Брэгга, узкополосными фильтрами первого столбца перекрыт весь заданный диапазон просматриваемых частот, частоты гетеродинов выбраны так, чтобы обеспечить трансформацию частот принимаемых сигналов на выходе каждого усилителя промежуточной частоты к одинаковому для всей линейки усилителей промежуточной частоты соответствующего столбца значению промежуточной частоты.

Описание изобретения к патенту

Предлагаемый приемник относится к области радиотехники и может использоваться для обнаружения выхода в эфир радиостанций с псевдослучайной перестройкой рабочей частоты (ППРЧ) и определения их сетки используемых частот.

Известны акустооптические приемники (авт. свид. СССР №№1.718.695, 1.785.410, 1.799.226, 1.799.227; патент СССР №1.838.882; патенты РФ №№2.001.533, 2.007.046, 2.234.808 и другие).

Из известных устройств наиболее близким к предлагаемому является акустооптический приемник (авт. свид. СССР №1.758.883, Н04В 10/06,1990), который и выбран в качестве прототипа.

Указанный приемник содержит приемную антенну, преобразователь частоты, состоящий из последовательно соединенных первого смесителя, второй вход которого соединен с выходом гетеродина, первого усилителя промежуточной частоты, сумматора, перемножителя, второй вход которого соединен с выходом приемной антенны, узкополосного фильтра, амплитудного детектора, ключа, второй вход которого соединен с выходом сумматора и пьезоэлектрического преобразователя ячейки Брэгга, последовательно соединенных приемной антенны, второго смесителя, второй вход которого соединен через первый фазовращатель на 90° с вторым выходом гетеродина, второго усилителя промежуточной частоты и второго фазовращателя на 90°, выход которого соединен с вторым входом сумматора, и лазера, на пути распространения пучка света которого последовательно установлены коллиматор и ячейка Брэгга, на пути распространения дифрагированной части пучка света установлена линза, в фокальной плоскости которой размещена матрица фотодетекторов.

Однако известный приемник не обеспечивает одновременного, параллельного обнаружения и приема нескольких кратковременных сигналов, появляющихся на разных частотах и принадлежащих контролируемой радиостанции с псевдослучайной перестройкой рабочей частоты.

Технической задачей изобретения является обеспечение возможности для одновременного и параллельного обнаружения и приема нескольких кратковременных сигналов, появляющихся на разных частотах и принадлежащих контролируемой радиостанции с псевдослучайной перестройкой рабочей частоты.

Поставленная задача решается тем, что акустооптический приемник, содержащий согласно ближайшему аналогу лазер, на пути распространения пучка света которого последовательно установлены коллиматор и ячейка Брэгга, на пути распространения дифрагированной части пучка света установлена линза, в фокальной плоскости которой размещена матрица фотодетекторов, а также последовательно включенные приемную антенну и преобразователь частоты, отличается от ближайшего аналога тем, что он снабжен блоком регистрации, подключенным к выходу матрицы фотодетекторов, а преобразователь частоты выполнен многоканальным, состоящим из m строк и n столбцов, причем каждая строка содержит последовательно подключенные к выходу приемной антенны узкополосный фильтр и (n-1) звеньев, каждое из которых состоит из последовательно включенных смесителя, второй вход которого соединен с выходом гетеродина, и усилителя промежуточной частоты, выходы усилителей промежуточной частоты (n-1) - го столбца через логический элемент или соединены с пьезоэлектрическим преобразователем ячейки Брэгга, узкополосными фильтрами первого столбца перекрыт весь заданный диапазон просматриваемых частот, частоты гетеродинов выбраны так, чтобы обеспечить трансформацию частот принимаемых сигналов на выходе каждого усилителя промежуточной частоты к одинаковому для всей линейки усилителей промежуточной частоты соответствующего столбца значению промежуточной частоты.

Структурная схема предлагаемого акустооптического приемника представлена на фиг.1. Преобразование спектра сигнала в преобразователе частоты показано на фиг.2. Определение частоты сигнала с помощью преобразователя частоты показано на фиг.3.

Акустооптический приемник содержит последовательно включенные приемную антенну 1, преобразователь 2 частоты и пьезоэлектрический преобразователь ячейки Брэгга 10, а также лазер 8, на пути распространения пучка света которого последовательно установлены коллиматор 9 и ячейка Брэгга 10, на пути распространения дифрагированной части пучка света установлена линза 11, в фокальной плоскости которой размещена матрица 12 фотодетекторов, к выходу которой подключен блок 13 регистрации.

Преобразователь 2 частоты выполнен многоканальным, состоящим из m строк и n столбцов, причем каждая строка содержит последовательно подключенные к выходу приемной антенны 1 узкополосный фильтр 3ij, и (n-1) звеньев, каждое из которых состоит из последовательно включенных смесителя 5 ij, второй вход которого соединен с выходом гетеродина 4ij, и усилителя 6ij промежуточной частоты, выходы усилителей 6in промежуточной частоты (n-1) - го столбца через логический элемент или 7 соединены с пьезоэлектрическим преобразователем ячейки Брэгга 10 (i=1, 2,..., m, j=1, 2,..., n).

Акустооптический приемник работает следующим образом. Весь заданный диапазон просматриваемых частот Дf разбивается на m поддиапазонов с полосой пропускания акустооптический приемник, патент № 2329602 f1, так что

акустооптический приемник, патент № 2329602

Частоты настройки узкополосных фильтров 3 ij и усилителей 6ij промежуточной частоты сдвинуты одна относительно другой на полосу пропускания (i=1, 2,..., m, j=1, 2,..., n). Узкополосные фильтры первого столбца (311, 321 ,..., 3m1) перекрывают весь заданный диапазон частот Дf. Полоса пропускания каждого из этих фильтров примерно одинакова и равна акустооптический приемник, патент № 2329602 f1.

В каждом столбце имеется m гетеродинов, частоты которых f11, f 21,...,fm1 выбираются так, чтобы обеспечить трансформацию частот сигналов на выходе каждого усилителя 6ij промежуточной частоты к одинаковому для всех усилителей 6i1 промежуточной частоты fпр1 с точностью до полосы пропускания одного усилителя промежуточной частоты первого столбца акустооптический приемник, патент № 2329602 f1. В соответствии со сказанным частоты гетеродинов 4i1 первого столбца выбираются из следующих условий:

- первой строки f 11=f1+акустооптический приемник, патент № 2329602 f1, где f1 - нижняя частота просматриваемого диапазона;

- второй строки f21=f11+акустооптический приемник, патент № 2329602 f1;

- третьей строки f 31=f21+акустооптический приемник, патент № 2329602 f1,... и т.д.

Таким образом, диапазон частот f1...f1 +Дf преобразуется в менее широкий диапазон fпр1 ...fпр1+акустооптический приемник, патент № 2329602 f1 (фиг.2). Второй столбец трансформирует этот диапазон в еще более узкий диапазон

F пр2...fпр2+акустооптический приемник, патент № 2329602 f2,

где акустооптический приемник, патент № 2329602

Усилители промежуточной частоты второго столбца имеют следующие полосы прозрачности:

акустооптический приемник, патент № 2329602

где fпp1 - нижняя промежуточная частота;

акустооптический приемник, патент № 2329602 f2 - полоса прозрачности усилителей промежуточной частоты второго столба.

Если имеются n сигналов, то акустооптический приемник, патент № 2329602

В общем случае полосы прозрачности усилителей промежуточной частоты образуют своеобразную матрицу (фиг.3), с помощью которой можно определить частоту принимаемого сигнала.

Точность определения частоты будет

акустооптический приемник, патент № 2329602

т.е. определяется полосой пропускания усилителей промежуточной частоты последнего столбца.

Принятые сигналы через логический элемент ИЛИ 7 поступают на пьезоэлектрический преобразователь ячейки Брэгга 10, где происходит их преобразование в акустические колебания.

Ячейка Брэгга 10 состоит из звукопровода и возбуждающей гиперзвук пьезоэлектрической пластины, выполненной из кристалла ниобата лития соответственно Х и Y - 35° среза. Это обеспечивает автоматическую подстройку по углу Брэгга и работу ячейки в широком диапазоне частот.

Пучок света от лазера 8, сколлимированный коллиматором 9, проходит через ячейку Брэгга 10 и дифрагирует на акустических колебаниях, возбужденных принятыми сигналами. При этом на пути распространения дифрагированной части пучка света устанавливается линза 11, в фокальной плоскости которой размещается матрица 12 фотодетекторов.

Следовательно, матрицей 12 фотодетекторов определяются частотно-временные параметры (частоты, моменты приема и длительности) принимаемых сигналов контролируемой радиостанции с псевдослучайной перестройкой рабочей частоты. Эти параметры в виде частотно-временной маски фиксируются блоком 13 регистрации.

Таким образом, предлагаемый акустооптический приемник по сравнению с прототипом обеспечивает возможность для одновременного и параллельного обнаружения и приема нескольких кратковременных сигналов, появляющихся на разных частотах и принадлежащих контролируемой радиостанции с псевдослучайной перестройкой рабочей частоты. Это достигается выполнением преобразователя частоты многоканальным, состоящим из m строк и n столбцов. Многоканальный преобразователь частоты обеспечивает лучшую чувствительность и разрешающую способность по частоте по сравнению с обычными преобразователями частоты.

Такие достоинства многоканального преобразователя частоты, как большое быстродействие, простота технической реализации, возможность обеспечения эффективного разделения сигналов и высокой точности измерения их частоты, а также непрерывное улучшение возможностей микроминиатюризации аппаратуры делают многоканальные преобразователи частоты весьма перспективными для обнаружения выхода в эфир радиостанций с псевдослучайной перестройкой рабочей частоты (ППРЧ) и определения их сетки используемых частот.

Класс H04B10/06 приемники

акустооптический приемник -  патент 2452092 (27.05.2012)
акустооптический приемник -  патент 2439811 (10.01.2012)
акустооптический приемник -  патент 2325761 (27.05.2008)
детектирование сигналов с высокой разрешающей способностью и высокой чувствительностью -  патент 2316897 (10.02.2008)
акустооптический приемник -  патент 2314644 (10.01.2008)
акустооптический приемник -  патент 2291575 (10.01.2007)
способ обработки двоичных когерентных оптических сигналов в условиях шума спонтанного излучения и воздействия жесткой радиации и оптический приемник, реализующий способ -  патент 2286019 (20.10.2006)
устройство обнаружения оптического излучения -  патент 2276382 (10.05.2006)
устройство для распознавания информационных сигналов -  патент 2270522 (20.02.2006)
акустооптический приемник сложных сигналов -  патент 2265281 (27.11.2005)

Класс H04J14/00 Оптические мультиплексные системы

способ сопряжения набора вторичных плазмон-поляритонных каналов связи терагерцового диапазона с основным каналом -  патент 2526888 (27.08.2014)
система и узел связи -  патент 2518397 (10.06.2014)
совместно используемый канал сигнализации -  патент 2516866 (20.05.2014)
многоканальный оптический мультиплексор ввода-вывода -  патент 2502194 (20.12.2013)
способ стеганографической передачи информации через главный оптический тракт и устройство для его осуществления -  патент 2496239 (20.10.2013)
оптическое кодирующее наноустройство -  патент 2485691 (20.06.2013)
расширение конвергенции передачи гигабитной пассивной оптической сети для доступа следующего поколения -  патент 2467482 (20.11.2012)
способ, устройство и система передачи и приема клиентских сигналов -  патент 2465732 (27.10.2012)
волоконно-оптическая линия передачи информации (варианты) -  патент 2462820 (27.09.2012)
волоконно-оптическая система передачи со спектральным уплотнением -  патент 2456748 (20.07.2012)
Наверх