способ получения композиции для очистки и обеззараживания воды
Классы МПК: | B01J20/26 синтетические высокомолекулярные соединения B01J20/16 алюмосиликаты |
Автор(ы): | Хаширова Светлана Юрьевна (RU), Малкандуев Юсуф Ахматович (RU), Мирзоев Руслан Сабирович (RU), Лигидов Мухамед Хусенович (RU) |
Патентообладатель(и): | Государственное образовательное учреждение высшего профессионального образования Кабардино-Балкарский государственный университет им. Х.М. Бербекова (RU) |
Приоритеты: |
подача заявки:
2006-08-01 публикация патента:
20.08.2008 |
Изобретение относится к полимерным композициям, которые можно использовать в области очистки и обеззараживания природных и сточных вод. Предложен способ получения полимерной композиции путем взаимодействия гуанидинсодержащего полимера и природного минерала, в котором взаимодействие водорастворимого гуанидинсодержащего полимера и природного минерала осуществляют интеркалированием гуанидинсодержащего мономера в межслоевое пространство монтмориллонита и его последующей полимеризацией. Соотношение компонентов в полученной композиции, мас.%: монтмориллонит 50-85, метакрилат гуанидина 15-50. Изобретение позволяет повысить сорбционную активность композиции. 4 табл.
Формула изобретения
Способ получения композиции для очистки и обеззараживания воды, включающий модифицирование природного минерала гуанидинсодержащим полимером, отличающийся тем, что в качестве природного минерала берут бентонитовую глину, содержащую не менее 70% минерала группы монтмориллонита, к водной суспензии которой добавляют мономерную соль на основе метакриловой кислоты и гуанидина в количестве 15-50% от массы монтмориллонита, и радикальный инициатор полимеризации, осуществляют перемешивание при 60-70° до полимеризации мономера на поверхности и в межслоевом пространстве глины.
Описание изобретения к патенту
Изобретение относится к области получения композиционных материалов, обладающих сорбционными и биоцидными свойствами и предназначенных для очистки и обеззараживания воды.
Известно, что использование полимерных производных гуанидина для обеззараживания воды по эффективности равносильно ее озонированию или хлорированию, однако, в отличие от последних не оказывает раздражающего действия на слизистые и кожные покровы, не сопровождается накоплением в воде канцерогенных веществ, не вызывает аллергические реакции у людей и коррозию оборудования [К.Е.Скворцова, А.Г.Нехорошева, П.А.Гембицкий, В сб. Проблемы дезинфекции и стерилизации (Под ред. В.И.Вашкова). Вып.24. ВНИИДиС, Москва, 1975. С.58].
Наиболее известным и изученным аналогом полимера, использованного для получения композиции, является полигексаметиленгуанидин (ПГМГ), который представляет собой высокомолекулярное производное специфического азотистого основания - гуанидина
[П.А.Гембицкий, Л.Ф.Бокша, Г.Ф.Болденков, С.И.Мурмыло, Д.С.Жук. Химическая промышленность, №2, 82 (1984)].
Благодаря сочетанию флокулирующих и биоцидных свойств полимерные материалы на основе полигексаметиленгуанидина используются при очистке и дезинфекции бытовых и промышленных сточных вод [В.И.Зотова, М.И.Афанасьева, Н.Ю.Тишкова, П.А.Гембицкий, И.И.Воинцева. Вопросы курортологии, физиотерапии и ЛФК. №2, 48 (1992)].
Наиболее близким к предлагаемому изобретению является способ получения биоцидного сорбента клиноцида, представляющего собой природный цеолит (клиноптилолитсодержащий туф), на поверхности которого ПГМГ закреплен с помощью эпихлоргидрина [В.А.Никашина, П.А.Гембицкий, Э.М.Кац, Л.Ф.Бокша, А.Х.Галузинская. Изв. АН. Сер.хим., 1550 (1994)].
Способ его получения заключается в том, что для закрепления ПГМГ в водонерастворимой форме на цеолите используют реакцию поперечного сшивания ПГМГ под действием эпихлоргидрина в присутствии щелочи (0,7-1,5 моль эпихлоргидрина на звено ПГМГ). Реакция происходит по механизму последовательного оксиалкилирования гуанидиновых групп. Клиноцид является сорбентом по отношению к ионам тяжелых и радиоактивных металлов. Клиноцид обладает катионообменной емкостью (1,0-1,5 мг-экв./мл), анионообменной емкостью (0,2-0,3 мг-экв./мл) и биоцидными свойствами [Пат. 2050971, РФ; Б.И.(36), 88 (1995)].
Недостатками способа получения указанной композиции являются необходимость использования эпихлоргидрина для сшивания гуанидинсодержащего полимера и закрепления его на поверхности цеолита, дополнительный расход щелочи, многостадийность и длительность процесса. Недостатком полимерной композиции является низкая ионообменная емкость, так как сорбционными свойствами обладает лишь модифицированная органическим веществом поверхность композиции.
Задачи, решаемые изобретением:
- повышение сорбционной активности и упрощение технологии получения сорбентов для очистки и обеззараживания воды;
- улучшение эксплуатационных качеств бентонитовой глины как сорбента, т.е. придание структуры, позволяющей использовать ее в динамическом режиме очистки воды;
- снижение себестоимости полимерных композиционных материалов за счет использования в качестве сырья природных материалов;
- расширение возможностей использования сорбентов для извлечения из воды примесей широкого спектра (неорганические примеси, органические вещества, ионы, красители и т.д.).
Заявляемое изобретение отличается тем, что для получения биоцидного сорбента используется слоистый минерал (монтмориллонит) и гуанидинсодержащий полимер, интеркалированный в межслоевое пространство глинистого минерала. В качестве модификатора и гидрофобизатора к водной суспензии бентонитовой глины, в состав которой входит не менее 70% минерала группы монтмориллонита, добавляется мономерная соль на основе метакриловой кислоты и гуанидина формулы
где R=СН3.
При этом происходит гидрофобизация и модификация поверхности глинистого минерала с образованием слоистого столбчатого глинистого материала. Далее к водному раствору модифицированного таким образом бентонита добавляется радикальный инициатор - персульфат аммония, так чтобы общее содержание персульфата аммония в суспензии составило 0,05-0,2 мас.%, и смесь перемешивается 30 минут при температуре 60-70°С. Соотношение гуанидинового соединения и бентонитовой глины (50-85):(15-50), предпочтительно 75:25 мас.%. В результате мономер полимеризуется на поверхности и в межслоевом пространстве глины. В процессе реакции полимеризации мономера в глине образуется композиция, которая представляет собой твердую однородную массу, способную набухать в воде, и обладает свойствами эффективного фильтрующего материала, в том числе и в динамических условиях очистки воды. Ионообменные свойства композиции определяются как свойствами полимера - полиамфолита, так и катионообменными свойствами бентонитовой глины. Данная композиция является сорбентом не только по отношению к ионам тяжелых металлов, но и способна сорбировать различные органические загрязнители типа фенола, красителей и т.д. Одновременно происходит обеззараживание воды.
Способ осуществляется следующим образом.
Пример 1. В четырехгорлую колбу объемом 0,5 л, снабженную мешалкой, обратным холодильником, термометром, помещают 100 мл дистиллированной воды, 5 г монтмориллонита и перемешивают до получения однородной суспензии. Затем в суспензию добавляют 2,5 г метакрилата гуанидина, 1 мл свежеприготовленного раствора персульфата аммония, в котором содержится 0,12 г (NH 4)2S2O 8, и поднимают температуру в реакционной среде до 60-70°С. Реакционную смесь перемешивают до образования твердой однородной массы. Полученный продукт извлекают из колбы, многократно промывают дистиллированной водой и сушат при комнатной температуре 48 часов.
Пример 2. В четырехгорлую колбу объемом 0,5 л, снабженную мешалкой, обратным холодильником, термометром, помещают 100 мл дистиллированной воды, 5 г монтмориллонита и перемешивают до получения однородной суспензии. Затем в суспензию добавляют 1,25 г метакрилата гуанидина, 1 мл свежеприготовленного раствора персульфата аммония, в котором содержится 0,12 г (NH4 )2S2O 8, и поднимают температуру в реакционной среде до 60-70°С. Реакционную смесь перемешивают до образования твердой однородной массы. Полученный продукт извлекают из колбы, многократно промывают дистиллированной водой и сушат при комнатной температуре 48 часов.
Пример 3. В четырехгорлую колбу объемом 0,5 л, снабженную мешалкой, обратным холодильником, термометром, помещают 100 мл дистиллированной воды, 5 г монтмориллонита и перемешивают до получения однородной суспензии. Затем в суспензию добавляют 0,75 г метакрилата гуанидина, 1 мл свежеприготовленного раствора персульфата аммония, в котором содержится 0,12 г (NH4 )2S2O 8, и поднимают температуру в реакционной среде до 60-70°С. Реакционную смесь перемешивают до образования твердой однородной массы. Полученный продукт извлекают из колбы, многократно промывают дистиллированной водой и сушат при комнатной температуре 48 часов.
Использование в заявляемом изобретении в качестве гидрофобизатора и модификатора в межслоевом пространстве глины гуанидинсодержащего мономера способного к дальнейшей полимеризации, значительно упрощает методику получения полимерной композиции и уменьшает длительность процесса.
Технический результат изобретения выражается в улучшении качества биоцидных сорбентов на основе природных материалов и полимеров, снижении расхода дорогостоящих реактивов, повышении потребительских свойств, отсутствии необходимости создания специальных устройств для очистки и обеззараживания воды.
Возможность извлечения синтезированными полимерными композитами некоторых тяжелых металлов из сточных и природных вод исследовали с использованием модельных растворов. Измерения массовой концентрации металлов в пробах воды до и после обработки композитами проводили атомно-адсорбционным методом с электротермической атомизацией с использованием атомно-адсорбционного спектрометра «МГА-915». Результаты исследований приведены в таблице 1.
Таблица 1 | ||||
№, п/п | элемент | Концентрация металла, мг/л | ||
исходный раствор | после введения сорбента | Степень сорбции, % | ||
полимерная композиция | ||||
1 | медь (II) | 2,91 | 0,047 | 98,3 |
2 | свинец (II) | 1,38 | 0,192 | 86,08 |
3 | кадмий (II) | 1,84 | 0,205 | 88,85 |
Как видно из таблицы, синтезированные гуанидинсодержащие композиционные материалы проявляют достаточно высокую сорбционную активность в отношении изученных металлов.
Результаты изучения сорбционной активности по йоду и метиленовому синему представлены в таблице 2.
Таблица 2 | ||||
№, п/п | Определяемое вещество | Исходная масса вещества, мг | Конечная масса вещества, мг | Удельная активность сорбента, г/100 г |
1 | метиленовый | 3 | 0,0125 | 2,98 |
синий | ||||
2 | йод | 254 | 210 | 44,45 |
Предварительные исследования бактерицидной активности синтезированных композиционных материалов, проведенные совместно с Бактериологической лабораторией ГСЭН КБР, показали, что они весьма активны и обладают биоцидным действием по отношению к грамположительным и грамотрицательным микроорганизмам.
Таблица 3 Зависимость числа колоний кишечной палочки от концентрации образца | ||||||
С, г/л | 0,0003 | 0,003 | 0,03 | 0,3 | 3 | образец |
Число колоний | 30 | 28 | 23 | 15 | 12 | полимерная композиция |
54 | 42 | 36 | 29 | 23 | ПГМГ |
Диаметр зоны задержки роста микроорганизмов Таблица 4 | ||
Образец | Диаметр зоны задержки роста (мм) | Качественная оценка биоцидности |
Полимерная композиция | 15 | +++ |
ПГМГ | 11 | ++ |
Таким образом, настоящее изобретение обеспечивает получение гуанидинсодержащих полимерно-глинистых композиций для очистки и обеззараживания природных и сточных вод, обладающих необходимыми сорбционными свойствами, с использованием дешевого и доступного сырья - бентонитовой глины.
Класс B01J20/26 синтетические высокомолекулярные соединения