газонаполненный состав для изоляции водопритока в скважину

Классы МПК:C09K8/44 содержащие только органические связующие
Автор(ы):,
Патентообладатель(и):Волков Владимир Анатольевич (RU),
Беликова Валентина Георгиевна (RU)
Приоритеты:
подача заявки:
2006-07-03
публикация патента:

Изобретение может быть использовано для изоляции водопритока в скважину, а также для регулирования профиля приемистости закачиваемой воды, глушения пластов, в качестве поршня при очистке трубопроводов и в качестве разделителя при транспорте различных нефтепродуктов. Газонаполненный состав для изоляции водопритока в скважину содержит, мас.%: эмульсия полимера анионного типа в масле - 0,15-5,0, поверхностно-активное вещество ПАВ - 0,02-10,0, соль поливалентного металла - 0,002-0,20, высокодисперсный гидрофобный материал - 0,1-3,0, нитрит натрия - 0,41-8,96, хлористый аммоний - 0,32-7,0, вода - остальное. Состав дополнительно содержит неорганическую кислоту или смесь сульфаминовой кислоты с фторидом или бифторидом, или фторидом-бифторидом аммония в количестве 0,1-0,2 мас.% сверх 100%, или ингибитор коррозии в количестве 0,1-1,5 мас.%, или углеводород в количестве 5-25 мас.%. Технический результат - увеличение термостабильности состава, увеличение его нефтевытесняющих свойств. 3 з.п. ф-лы, 5 табл.

Формула изобретения

1. Газонаполненный состав для изоляции водопритока в скважину, содержащий полимер анионного типа, поверхностно-активное вещество ПАВ, соль поливалентного металла, нитрит натрия, хлористый аммоний и воду, отличающийся тем, что он содержит полимер анионного типа в виде его эмульсии в масле, в качестве ПАВ - водо-, или масло-, или водомаслорастворимое, или масловодорастворимое ПАВ, или их смесь и дополнительно высокодисперсный гидрофобный материал при следующем соотношении компонентов, мас.%:

Эмульсия полимера анионного типа в масле 0,15-5,0
Указанное ПАВ0,02-10,0
Соль поливалентного металла0,002-0,20
Высокодисперсный гидрофобный материал 0,1-3,0
Нитрит натрия 0,41-8,96
Хлористый аммоний0,32-7,0
Водаостальное

2. Состав по п.1, отличающийся тем, что дополнительно содержит неорганическую кислоту или смесь сульфаминовой кислоты с фторидом аммония, или смесь сульфаминовой кислоты с бифторидом аммония, или смесь сульфаминовой кислоты с фторидом-бифторидом аммония в количестве 0,1-0,2 мас.% сверх 100%.

3. Состав по п.1, отличающийся тем, что дополнительно содержит ингибитор коррозии в количестве 0,1-1,5 мас.%.

4. Состав по п.1, отличающийся тем, что дополнительно содержит углеводород в количестве 5-25 мас.%.

Описание изобретения к патенту

Изобретение относится к нефтегазодобывающей промышленности, в частности к составам для изоляции водопритока в скважину, а также к составам для регулирования профиля приемистости закачиваемой воды, кроме того, состав можно использовать при глушении пластов с АНПД и в качестве поршня при очистке трубопроводов и транспорте различных нефтепродуктов в качестве разделителя.

Известен состав для ограничения водопритока в скважину, содержащий поверхностно-активное вещество (ПАВ), водорастворимый полимер - карбоксиметилцеллюлозу и воду (Амиян В.А., Амиян А.В. и Васильева Н.П. Вскрытие и освоение нефтегазовых пластов. М.: Недра, 1980, с.62-63, 115, 326-334).

Однако прочность пены, приготовленной по этому составу, как в объеме, так и в пористой нефтесодержащей среде, небольшая, вследствие конкурентной адсорбции ПАВ на поверхности породы и перехода его в нефть.

Известен состав для изоляции водопритока, содержащий в мас.%: гидролизованный ПАА 0,3-1,42; хромокалиевые квасцы 0,06-0,09; нитрит натрия 0,41-3,0, хлористый аммоний 0,32-2,35 и воду (а.с. №1458556, кл. Е21В 43/00, 1986).

При нагревании состава в пласте происходит выделение газообразного азота в результате взаимодействия нитрита натрия с хлоридом аммония, и состав вспенивается. Однако при температуре пласта ниже 60°С пена образуется неустойчивая в результате низкой скорости реакции газообразования, поэтому газонаполненный состав имеет невысокую прочность.

Известен состав, содержащий в мас.%: ПАА 0,30-1,25; бихромат натрия или калия 0,01-0,1; нитрит натрия 0,65-2,60; хлористый аммоний 0,48-1,90; соляную кислоту 0,11-0,18 и воду остальное (а.с. №1677260, 5, Е21В 33/138, опублик. 15.09.91. Бюл. №34).

Известен состав, который используют при пластовой температуре ниже 60°С, содержащий в мас.%: гидролизованный ПАА 0,2-1,0; ПАВ 0,05-2,0; хромсодержащее вещество 0,005-0,04; нитрит натрия 1,28-8,96; хлористый аммоний 1,0-7,0; соляную кислоту 0,1-0,5 и воду остальное (а.с. №1793044, 5, Е21В 43/32, опубл. 07.02.93. Бюл. №5). В качестве инициатора реакции газообразования используют соляную кислоту.

Однако вышеуказанные составы имеют гидрофильную природу и малый срок изоляции, в результате чего они имеют низкую эффективность закачки.

Наиболее близким к предлагаемому составу является состав, который используют при пластовой температуре выше 60°С, содержащий в мас.%: гидролизованный ПАА 0,15-1,0; ПАВ 0,02-1,0; хромсодержащее вещество 0,002-0,03; нитрит натрия 0,41-3,0; хлористый аммоний 0,32-2,35 и воду остальное (а.с. №1788212, 5, Е21В 33/138, опублик. 15.01.93. Бюл. №2).

Недостатками известных составов являются низкая термостабильность, низкая пеноустойчивость составов во времени и низкая их нефтевытесняющая способность.

Целью предлагаемого изобретения является улучшение изоляционных свойств газонаполненного состава после закачки его в призабойную зону пласта за счет увеличения термостабильности состава в результате увеличения прочности пены и пеноустойчивости состава во времени, увеличения его нефтевытесняющих свойств.

Поставленная задача решается тем, что газонаполненный состав для изоляции водопритока в скважину, содержащий полимер анионного типа, поверхностно-активное вещество ПАВ, соль поливалентного металла, нитрит натрия, хлористый аммоний и воду, содержит полимер анионного типа в виде его эмульсии в масле, в качестве ПАВ - водо-, или масло-, или водомаслорастворимое, или масловодорастворимое ПАВ или их смесь и дополнительно высокодисперсный гидрофобный материал при следующем соотношении компонентов, мас.%:

Эмульсия полимера в масле 0,15-5,0
Указанное ПАВ 0,02-10,0
Соль поливалентного металла 0,002-0,20
Высокодисперсный гидрофобный материал0,1-3,0
Нитрит натрия0,41-8,96
Хлористый аммоний 0,32-7,0
Вода остальное

Состав дополнительно содержит кислоту в количестве 0,1-0,2 мас.% сверх 100%, ингибитор коррозии в количестве 0,1-1,5 мас.%, углеводород в количестве 5-25 мас.%.

В качестве водорастворимых ПАВ используют анионные ПАВ, например АПАВ марки Сульфанол, выпускающийся по ТУ 2481-004-48482528-99 на ЗАО «Бурсинтез-М», либо сульфонаты разных марок, а также водорастворимые неионогенные ПАВ, например нонилфенол, оксиэтилированный 12 молями окиси этилена (АФ9-12), выпускающийся по ТУ-2483-077-05766801-98 на ОАО «Татнефть», либо его товарную форму СНО-3,4, либо НПАВ марки ОП-10, либо смесь анионного и неионогенного водорастворимых ПАВ, например Нефтенол ВВД, выпускающийся на АОЗТ «ХИМЕКО-ГАНГ».

В качестве маслорастворимого ПАВ используют, например, нефтенол НЗ, содержащий углеводородный раствор эфиров кислот таллового масла и триэтаноламина, выпускающийся на АОЗТ «ХИМЕКО-ГАНГ» по ТУ 2483-007-17197708-97; неонолы АФ 9 4-6 - неионогенные нонилфенолы, оксиэтилированные 4-6 молями оксиэтилена; а также нефтехим, содержащий сложные смеси производных карбоновых кислот, легкого таллового масла и солей пиперизина этих кислот в растворе керосина и катализата реформинга, выпускающийся по ТУ 2415-001-00151816-94, а также ингибитор коррозии марки Сонкор-9701, содержащий смесь модифицированных жирных аминов в органическом растворителе, выпускающийся по ТУ 2415-006-00151816-2000 на ЗАО «Опытный завод Нефтехим» г.Уфа; маслорастворимые нефтяные сульфонаты с ММ=600-700, синтетические алкиларилсульфонаты (например, алкилнафталинсульфокислота), реагент синол-ЭМ, содержащий углеводородный раствор продукта взаимодействия кислот таллового масла с триэтаноламином и карбамидом, алкилхлорида и окиси алкилдиметиламина; эмультал, выпускающийся по ТУ 6-14-1035-79.

Кроме того, в качестве поверхностно-активного вещества для обработки призабойных зон нагнетательных скважин используют смеси водомаслорастворимых ПАВ в виде готовых композиций, например моющие препараты МЛ-80 или МЛ-81Б (зимний вариант МЛ-80), содержащие смесь водорастворимого анионного ПАВ (23-28%) и неионогенного маслорастворимого ПАВ (12% мас), производимые по ТУ 2481-007-50622652-99-2002 на ЗАО НПФ «Бурсинтез-М», и новый моющий препарат марки «МЛ-Супер», выпускаемый фирмой «Дельта-пром» в г.Самаре по ТУ 2383-002-51881692-2000.

Для обработки призабойных зон добывающих скважин используют смесь масловодорастворимых ПАВ в виде готовых композиций, например нефтенол Н - композицию нефте- и нефтеводорастворимых сульфоэтоксилатов, неионогенных ПАВ и высокомолекулярных нефтяных сульфонатов, или нефтенол-001.M - продукты совместной переработки кислых нефтяных гудронов (отходов производства от олеумной и сернокислотной очистки минеральных масел) и оксиэтилированного алкилфенола марки ОП-4 (НПО «СинтезПАВ»).

В качестве смеси ПАВ используют смеси неионогенного и катионного ПАВ в виде готовых композиций, производимых разными фирмами, например ингибитор коррозии марки Викор-1А и Викор-2, выпускающиеся по ТУ 6-01-0203314-110-90 на ЗАО «Опытный завод Нефтехим» в г.Уфе, вышеуказанный эмульгатор марки синол ЭМ, выпускающийся на ЗАО НПФ «Бурсинтез-М» по ТУ 2413-048-48482528-98, эмульгатор нефтенол НЗН, выпускающийся на АОЗТ «ХИМЕКО-ГАНГ» по ТУ 2483-012-17197708-93, ингибитор коррозии Аминкор, выпускающийся по ТУ 2415-003-11159873-99 ОАО «Нефтехим» в г.Уфе, высшие жирные спирты и кетоны, например реагент марки МаслоПод, выпускающийся по ТУ 2433-016-00205311-99 на ЗАО «Куйбышевазот».

В качестве смеси ПАВ используют многокомпонентную смесь (МКС) синтетических АПАВ и НПАВ по патенту РФ №2220999, содержащую дополнительно алифатический или ароматический спирт, или продукты их содержащие и Полисил.

Предлагаемая смесь имеет низкую вязкость и высокую стабильность в условиях высокой температуры. В условиях высокой пластовой температуры (100°С) повышается роль многоатомных спиртов, так как они имеют высокую температуру кипения, которая составляет у низших диолов 188-224°С, что способствует повышению стабильности составов. Важным свойством спиртов, особенно гликолей, является их способность понижать температуру замерзания. Поэтому предлагаемые составы можно использовать в промысловых условиях в холодное время года для приготовления композиций. Применение органического антифриза позволит готовить незамерзающие композиции по предлагаемому составу в условиях минусовых температур.

В качестве эмульсии полимера анионного типа в масле используют эмульсии полиакриламида (ПАА) с ММ=0,5-18·10 6 и степенью гидролиза 5-20%, эмульсии карбоксиметилцеллюлозы (КМЦ) со степенью полимеризации СП=350-1200 и степенью замещения по карбоксильным группам СЗ=80-90, эфиры оксиэтилцеллюлозы (ОЭЦ) и других эфиров целлюлозы, эмульсии полиметакриловой кислоты (ПМАК), а также эмульсии поливиниламидоянтарной кислоты, эмульсии поливинилацетатных полимеров, например поливинилацетата и поливинилового спирта, сополимеров винилацетата и винилового спирта, эмульсии натриевой соли полисульфоэфира олеиновой кислоты.

Эмульсии полимеров в масле выпускаются некоторыми фирмами, например фирмой «Allied Colloids» (Англия) или фирмой «Rhone-Pouieng» (Франция), а также другими фирмами.

Эмульсии полимера в масле имеют концентрации 30-50 мас.% и образуют с водой, с вышеуказанными ПАВ или смесью ПАВ эмульсии.

В качестве раствора соли поливалентного металла можно использовать соли хрома, железа, алюминия в ацетатной, хлоридной, сульфатной, нитратной форме, например хромово-калиевые квасцы (хкк), отходы хромовых квасцов (охк), ацетаты хрома и алюминия, хлорид железа, сульфат и нитрат алюминия, а также соли в окисленной форме, например хроматы и бихроматы.

Катион поливалентного металла в окисленной форме восстанавливают в кислой среде сульфанолом или неонолом, или реагентами СНО-3Б или СНО-4Д.

Для увеличения гидрофобизации предлагаемый состав содержит высокодисперсный гидрофобный материал (ВДГМ) в количестве 0,1-3,0 мас.%.

В качестве высокодисперсного гидрофобного материала используют химически модифицированные по поверхности высокодисперсные гидрофобные материалы тетрафторэтилена (тфэ), оксидов титана, железа, хрома, цинка, алюминия, поливинилового спирта, а также высокодисперсные гидрофобные материалы оксидов кремния: белую сажу, тальк, аэросил, перлит, а также кремнеземы марки Полисил.

Вышеуказанные высокодисперсные гидрофобные материалы представляют собой химически инертные материалы со средним размером индивидуальных частиц от 0,1 до 100 мкм и насыпной плотностью от 0,1 до 2,0 г/см3, с краевыми углами смачивания от 114 до 178° и степенью гидрофобности от 96,0 до 99,99%. Они не оказывают вредного воздействия на человека и окружающую среду.

В качестве газообразователей используют нитрит натрия и хлористый аммоний.

Так как в составе при температуре до 60°С пена образуется неустойчивая из-за низкой скорости реакции газообразования, поэтому в качестве инициатора газообразования в состав добавляют кислоту или смесь кислоты с солью в количестве 0,1-0,2 мас.% сверх 100%.

В качестве кислоты или смеси кислоты с солью обычно используют соляную кислоту (HCl) или смесь соляной и плавиковой кислот (ССП), или смесь соляной с кремнефтористо-водородной кислотой (СКФВ), или смесь сульфаминовой кислоты с фторидом аммония (ССФА), или смеси сульфаминовой кислоты с бифторидом аммония (ССБФА), или с бифторидом - фторидом аммония, фосфорную или ортофосфорную кислоту в количестве 0,1-0,2 мас.%.

Одним из главных отличий предлагаемого состава от прототипа является то, что в предлагаемом составе вместо водного раствора полиакриламида - полимера анионного типа - используют полимер анионного типа в виде его эмульсии в масле, причем эмульсию как высокомолекулярного полиакриламида, так и низкомолекулярного, а также эмульсию карбоксиметилцеллюлозы (КМЦ) или эфиров оксиэтилцеллюлозы (ОЭЦ) или других вышеуказанных полимеров.

При этом, кроме водорастворимых ПАВ, используют водомаслорастворимые моющие средства марок МЛ-80 или МЛ-81Б, или новый моющий реагент марки «МЛ-Супер», или вышеуказанную смесь МКС, или масловодорастворимое ПАВ марок нефтенол-Н или нефтенол-001.М, или маслорастворимый ПАВ марки нефтенол Н3, а также смесь маслорастворимых ПАВ с неионогенными ПАВ, например композиции Синол-ЭМ, Нефтенол-Н3Н, или смесь маслорастворимых ПАВ, например композиции марок Аминкор, Викор-1А и Викор-2, Сонкор 9701, а также и другие указанные выше поверхностно-активные композиции.

Термостабильность предлагаемого газонаполненного состава увеличивается за счет введения полимера в виде его эмульсии в масле, и с увеличением концентрации эмульсии полимера увеличивается прочность пенной композиции и пеноустойчивость ее во времени. Предлагаемый состав представляет собой термостабильную газонаполненную эмульсию.

Известно, что для образования и стабилизации высокоустойчивых эмульсий необходимо, чтобы адсорбционные слои и связанные с ними сольватные оболочки обладали достаточно высокой структурной вязкостью. Высокую прочность пены газонаполненного состава обеспечивает введение полимера в виде его эмульсии в масле, имеющей достаточно высокую вязкость и образующей гелеобразно структурированные адсорбционные слои на границе раздела фаз.

За счет образования коллоидных адсорбционных слоев полимер, введенный в виде эмульсии его в масле, играет роль сильного стабилизатора устойчивости пенной композиции, в результате чего значительно повышается прочность пены и термостабильность (пеноустойчивость во времени) образующихся эмульсий. Получение устойчивых газонаполненных эмульсий обусловлено образованием высоковязкой пленки на поверхности раздела фаз, существование этой пленки проявляется в повышенной вязкости поверхностного слоя дисперсной фазы.

Так как введение анионного полимера в виде его эмульсии в масле увеличивает прочность структурно-вязких (гелеобразных) адсорбционных слоев, то при сближении (столкновениях) частиц дисперсной фазы, например при перемешивании или режиме высокой температуры, высоковязкая прослойка среды не успевает выдавиться. Адсорбционные слои, обладающие упругостью и механической прочностью, сопротивляются значительным разрушающим усилиям.

При увеличении концентрации эмульсии полимера, вводимой в композицию, нарастает стабилизирующее действие полимера, что позволяет получать устойчивые пенные эмульсии высокой прочности и термостабильности в условиях высокой температуры пласта.

Предлагаемый газонаполненный состав в отличие от известных аналогов и прототипа представляет собой устойчивую пенную эмульсию, стабилизированную на поверхности раздела фаз не только со стороны углеводородной (дисперсионной) среды эмульгатором, но и со стороны дисперсной фазы полимером в виде его эмульсии в масле за счет образования коллоидных адсорбционных слоев полимера в виде пленки, что проявляется в повышенной вязкости поверхностного слоя дисперсной фазы.

В предлагаемом составе ПАВ находится в связанном состоянии за счет взаимодействия его с катионом поливалентного металла и гидролизованным полимером. В результате такого взаимодействия образуется поверхностно-активный газонаполненный гель, прочно удерживающий газ, который образуется в результате реакции нитрита натрия и хлористого аммония.

Кроме того, ПАВ, содержащееся в газонаполненном предлагаемом составе, придает ему поверхностно-активные свойства, при закачке его в обводненные нефтяные скважины поверхность породы пласта изменяет смачиваемость, а именно гидрофобизируется за счет гидрофобных цепей ПАА или ПАВ. При гидрофобизации поверхности породы улучшается адгезия состава к породе, что способствует лучшему удерживанию его в пласте.

Для увеличения гидрофобизации состава предлагаемый газонаполненный состав содержит высокодисперсный гидрофобный материал в количестве 0,01-3,0 мас.%.

Высокодисперсные гидрофобные материалы, имея субмикронные частицы, легко проникают в поры и микротрещины коллектора, изменяют энергетику поверхности (смачиваемость). Это качественно изменяет фильтрационные характеристики коллектора как для воды, так и для нефти. Так как ВГМ, имея степень гидрофобности до 99%, в значительной степени гидрофобизирует поверхность породы за счет мелкого размера частиц и за счет сил адгезии, а также за счет изменения краевого угла смачивания до 170-178°С и снижения поверхностного натяжения.

После закачки предлагаемого состава, например, в глиносодержащий коллектор происходит фобизация глинистых частиц, в результате чего уменьшается толщина гидратных оболочек, окружающих глиняные частицы, что приводит к увеличению эффективных размеров поровых каналов и уменьшению набухания глинистых частиц.

Предлагаемый состав за счет улучшения его реологических свойств и термостабильности позволит эффективно его использовать в высокообводненных нефтяных пластах на контакте с высокоминерализованными водами для снижения проницаемости высокопроницаемых пропластков пласта.

Наши исследования показали, что композиции состава-прототипа термоустойчивы до температуры 60°С. С увеличением температуры термостабильность композиций прототипа резко уменьшается.

Так как в водных растворах гидролизованного полиакриламида при температуре выше 60°С происходит деструкция водного раствора полимера, поэтому прочность газонаполненного состава-прототипа с повышением температуры резко падает.

Предлагаемый газонаполненный состав имеет высокую термостабильность благодаря высокой термостабильности самой эмульсии полимера в масле, которая значительно меньше подвержена деструкции.

Высокая коррозийная активность состава в случае добавления кислоты в состав нейтрализуется присутствующим в составе эмульгатором, который обычно является продуктом взаимодействия жирных кислот и органического амина, т.е. ингибитором коррозии, который формирует на внутренней поверхности трубопроводов гидрофобную пленку.

Если предлагаемый состав в качестве ПАВ содержит водорастворимые или водомаслорастворимые ПАВ, то целесообразно для защиты коллекторов и трубопроводов дополнительно вводить в состав ингибитор коррозии.

Предлагаемый состав в зависимости от технологической необходимости может содержать ингибиторы коррозии марок, например Аминкор, Викор-1А и Викор-2, Сонкор 9701, нефтехим, СНПХ-6030, СНПХ-6035, СНПХ-6201, СНПХ-6438, СНПХ-6418 в количестве 0,1-1,5 мас.%.

Для понижения вязкости приготовляемых композиций заявляемый состав может содержать углеводород в количестве 5,0-25,0 мас.%.

В качестве углеводорода используют стабильный бензин, керосин, гексановую фракцию (смесь предельных углеводородов С 68 и выше), газовый конденсат, нефрас, дизельное топливо, а также маловязкие нефти.

Известно, что нефть содержит в себе ряд природных эмульгирующих добавок (эмульгаторов), которые дополнительно стабилизируют предлагаемые эмульсии.

Предлагаемый газонаполненный состав готовят следующим образом.

К рабочему раствору полимера анионного типа в виде его эмульсии в масле концентрацией 0,15-5,0 мас.% небольшими порциями при перемешивании добавляют расчетное количество вышеуказанных ПАВ или смеси ПАВ в количестве 0,02-10,0 мас.%, затем добавляют газообразователи - нитрит натрия в количестве 0,41-8,96 мас.% и хлористый аммоний в количестве 0,32-7,0 мас.%, затем высокодисперсный гидрофобный материал в количестве 0,1-3,0 мас.%, после чего дозируют заранее приготовленный 1-10%-ный раствор соли поливалентного металла в количестве 0,002-0,20 мас.% и состав тщательно перемешивают.

В композиции, которые используют при температуре до 60°С, добавляют в качестве инициатора кислоту и оставляют на выдержку, как в нашем примере, при температуре 20°С.

Композиции, которые выдерживают при температуре выше 60°С, не содержат кислоты, так как реакция газообразования выше 60°С имеет высокую скорость, композиции помещают в термошкаф при температуре 95°С. Все композиции газонаполненного состава термостатируют во времени.

В композициях, которые используют до 60°С с помощью инициатора газообразования, и в композициях, которые используют при нагревании выше 60°С, газообразователи начинают взаимодействовать между собой с выделением газообразного азота, который вспенивает образующий гель.

Прочность полученных газонаполненных композиций предлагаемого состава, как и состава-прототипа, характеризуют предельной нагрузкой, которую определяют после их выдержки при температуре 20 и 95°С в течение 20 час, 7 суток и 20 суток.

Чтобы легче было сравнивать результаты, исследование прочности композиций как предлагаемого состава, так и состава-прототипа проводили в одинаковых условиях.

В стакан, где образовалась газонаполненная композиция, на поверхность пены помещают пенопластовый поршень и нагружают его металлическими шайбами определенного веса до момента, при котором начинается уменьшение пены.

Эту предельную нагрузку на пену (Р) определяют в Паскалях (Па) по формуле:

газонаполненный состав для изоляции водопритока в скважину, патент № 2332439

где m - вес шайб, г; S - площадь поршня, м 2.

Предельную нагрузку Р на пену определяли через 20 час, 7 сут и 20 сут.

Предел пеноустойчивости композиций во времени предлагаемого состава и состава-прототипа определяли визуально до резкого уменьшения объема пенной композиции и фиксировали количество суток, в течение которых объем пены оставался примерно постоянным.

Соотношение компонентов в композициях предлагаемого состава и состава-прототипа, их прочностная характеристика в Па и предел пеноустойчивости в сутках при 20 и 95°С приведены в табл.1-3.

Для определения снижения проницаемости коллекторов после закачки предлагаемых составов и увеличения их нефтевытесняющей способности были проведены фильтрационные исследования.

Пример 1. Для приготовления предлагаемого состава в эмульсию ПАА с MM=16·106 и степенью гидролиза 15% (под шифром П-1) или эмульсию ПАА с MM=5·10 6 и степенью гидролиза 5% (под шифром П-2), или эмульсию карбоксиметилцеллюлозы марки КМЦ-600 (под шифром П-3) в количестве 0,15-5,0 мас.% вводят 0,02-10 мас.% вышеуказанных ПАВ или смеси ПАВ, затем дозируют хлористый аммоний в количестве 0,32-7,0 мас.%, нитрит натрия в количестве 0,41-8,96 мас.% и высокодисперсный гидрофобный материал в количестве 0,1-3,0 мас.%, после чего дозируют заранее приготовленные 1-10%-ные растворы соли поливалентного металла в количестве 0,002-0,20 мас.% и состав тщательно перемешивают. Предлагаемый состав может содержать ингибитор коррозии в количестве 0,1-1,5 мас.% и углеводород в количестве 5-25 мас %. (см. табл.1).

В примере 10 и 24 табл.1 используют многокомпонентную смесь (МКС), содержащую смесь анионных и неионогенных ПАВ и спиртовую добавку - в примере 10 - пропанол, а в примере 24 - этиленгликоль.

Углеводород добавляют в вышеуказанные композиции для регулирования вязкости эмульсий.

Предлагаемую эмульсию используют при температуре пласта выше 60°С.

Для фильтрации предлагаемого состава заранее готовят снабженные рубашками для термостатирования колонки из нержавеющей стали длиной 220 мм и внутренним диаметром 32 мм, которые заполняют смесью, содержащей песчаники, которые неравномерно расчленены прослоями плотных разностей алевритов и глин, с месторождения Бобриковского горизонта Визейского яруса Самарской области. Модели под вакуумом насыщают водой, термостатируют при 95°С, весовым способом определяют исходную проницаемость кернов по пресной воде, которая составила 4,05-6,5 мкм 2 (K1). Затем предлагаемый состав фильтруют на фильтрационной установке с целью определения снижения проницаемости.

Через колонку прокачивают один объем пор предлагаемого состава, затем три объема пор керна воды. После этого определяют проницаемость по воде (K2 ). Уменьшение проницаемости в % определяют по изменению проницаемости керна по воде до и после прокачки состава: K1 /K2·100%.

Состав-прототип готовят путем смешения 0,15-1,0 мас.% водного раствора ПАА с ММ=16·10 6 (П-1А) с 0,02-1,0 мас.% неонола-12 или сульфанола, хромсодержащего вещества в количестве 0,002-0,03 мас.%, хлористого аммония в количестве 0,32-2,35 мас.%, нитрита натрия в количестве 0,41-3,0 мас.%.

Результаты фильтрации показывают, что при введении в состав вместо водного раствора полимера - полимера в виде его эмульсии в масле, в качестве ПАВ - водо- или масло, или водомасло-, или масловодорастворимого ПАВ или их смеси и высокодисперсного гидрофобного материала (ВДГМ) в указанных количествах - проницаемость керна снижается 1,3-4,7 раза (сравните заявляемые эмульсии с эмульсиями-прототипами в табл.4).

Содержание компонентов в составе, замеры предельной нагрузки на пену в Па через 20 час, 7 сут и 20 сут и пеноустойчивость в сутках заявляемых составов и составов-прототипов при 95°С представлены в табл.1 и 2.

Предельная нагрузка на пену предлагаемых составов через 20 час в 3-3,5 раза была выше предельной нагрузки на пену составов-прототипов, через 3 и 5 суток все составы-прототипы разрушились. Пеноустойчивость предлагаемых составов составляет 8-28 сут.

Термостабильность заявляемого состава в результате повышения предельной нагрузки на пену и пеноустойчивости состава во времени увеличивается в 4-8 раз в сравнении с составом-прототипом (см. табл.1 и 2).

Пример 2. Предлагаемые композиции состава готовят путем перемешивания вышеуказанных компонентов (см. пример 1) и добавлением в состав кислоты, например соляной кислоты (HCl) или смеси соляной и плавиковой кислотой (ССП), или смеси соляной с кремнефтористо-водородной кислотой (СКФВ), или смеси сульфаминовой кислоты с фторидом аммония (ССФА), или смеси сульфаминовой кислоты с бифторидом аммония (ССБФА), фосфорной или ортофосфорной кислоты в количестве 0,1-0,2 мас.% сверх 100%.

Предлагаемую эмульсию с добавлением кислоты используют при температуре пласта до 60°С (в нашем примере при 20°С).

Состав-прототип готовят путем смешения 0,15-1,0 мас.% водного раствора ПАА с ММ=16·10 6 (П-1А) с 0,02-1,0 мас.% неонола-12 или сульфанола, хромсодержащего вещества в количестве 0,002-0,03 мас.%, хлористого аммония в количестве 0,32-2,35 мас.%, нитрита натрия в количестве 0,41-3,0 мас.% и добавлением соляной кислоты в композиции.

Пеноустойчивость состава и замеры предельной нагрузки на пену через 20 час, 7 сут и 20 сут заявляемых составов и составов-прототипов при 20°С представлены в табл.3.

Результаты замеров показывают, что предельная нагрузка на пену предлагаемых составов через 20 час, 7 сут и 20 сут в 3-3,5 раза выше предельной нагрузки на пену составов-прототипов. Пеноустойчивость предлагаемых составов выше составов-прототипов в 3 и более раз.

Результаты фильтрации заявляемого состава и состава-прототипа при 20°С показывают, что при введении в заявляемый состав вместо водного раствора полимера - полимера в виде его эмульсии в масле, в качестве ПАВ - водо- или масло-, или водомасло-, или масловодорастворимого ПАВ или их смеси и высокодисперсного гидрофобного материала (ВДГМ) в указанных количествах - проницаемость керна снизилась в 3,88 и 1,85 раза соответственно (см. табл.4, композиции 6 и 7 из табл.3 при 20°С).

Пример 3. Для приготовления предлагаемого состава в эмульсию ПАА с ММ=15·106 и степенью гидролиза 15% (под шифром П-1) или эмульсию ПАА с ММ=5·106 и степенью гидролиза 5% (под шифром П-2), или эмульсию карбоксиметилцеллюлозы марки КМЦ-600 (под шифром П-3) в количестве 0,15-5,0 мас.% вводят 0,02-10 мас.% вышеуказанных ПАВ или смеси ПАВ, затем дозируют хлористый аммоний в количестве 0,32-7,0 мас.%, нитрит натрия в количестве 0,41-8,96 мас.% и высокодисперсный гидрофобный материал в количестве 0,1-3,0 мас %, после чего дозируют заранее приготовленные 1-10%-ные растворы соли поливалентного металла в количестве 0,002-0,20 мас.%. Предлагаемый состав может содержать ингибитор коррозии в количестве 0,1-1,5 мас.% и углеводород в количестве 5-25 мас %. (см. табл.1).

Углеводород добавляют в вышеуказанные композиции для регулирования вязкости эмульсий.

Нефтевытесняющую способность предлагаемых составов определяют в условиях доотмыва остаточной нефти на линейной модели однородного пласта, представляющей собой вышеописанный керн из нержавеющей стали. Керн заполняют вышеописанной смесью. Модель под вакуумом насыщают водой, термостатируют при 95°С, весовым способом определяют проницаемость керна по воде.

После этого в керн под давлением нагнетают нефть до тех пор, пока на выходе из нее не появится чистая (без воды) нефть, затем определяют начальную нефтенасыщенность керна. В фильтрационных работах используют природную нефть плотностью 842 кг/м 3 и динамической вязкостью 8,5 мПа·с при 20°С. Начальное вытеснение проводят водой (три поровых объема) и определяют коэффициент вытеснения нефти по воде. Затем через керн фильтруют один поровый объем испытуемого состава, затем три поровых объема воды, определяют прирост и общий коэффициент вытеснения нефти.

Результаты фильтрации заявляемых составов и составов-прототипов по определению нефтевытесняющей способности их представлены в табл.5.

За счет введения гидрофобной добавки в состав изменяется смачиваемость поверхности породы, а именно увеличивается гидрофобизация породы коллектора. При этом снижается поверхностное натяжение на границе раздела фаз вода-порода-нефть и увеличивается относительная проницаемость пласта по нефти, увеличивается нефтевытесняющая способность состава, в результате чего повышается дебит нефти.

За счет присутствия в предлагаемом составе кроме неонола и сульфанола других вышеперечисленных ПАВ: водо-, или масло-, или масловодо-, или водомаслорастворимого ПАВ или смеси ПАВ, анионного полимера в виде его эмульсии в масле и высокодисперсного гидрофобного материала улучшаются фильтрационные характеристики скважины, в результате чего увеличивается фазовая проницаемость скважины по нефти.

Техническим результатом является улучшение изоляционных свойств газонаполненного состава после закачки его в призабойную зону пласта за счет увеличения термостабильности состава в результате увеличения прочности пены и пеноустойчивости состава во времени, увеличения его нефтевытесняющих свойств.

Предложенный газонаполненный состав при закачке в пласт создает повышенные сопротивления в пористой среде и, в первую очередь, перекрывает крупные поры и трещины, по которым поступает вода, в результате чего существенно снижается обводненность скважин.

Введением углеводорода в предлагаемый состав можно регулировать вязкость состава для закачки его в низкопроницаемые участки пласта.

Таблица 1.

Композиции газонаполненного предлагаемого состава и состава-прототипа.
№ состава СоставСодержание компонентов, мас.%
Эмульсия полимера ПАВ или смесь ПАВ Соль поливалент. мет-ла.ВДГМ NH4Cl NaNO2Ингибитор коррозиивода
шифрк-вомарка к-во   маркак-во маркак-во
12 345 678 91011 121314 15
1Заявляем П-10,10 неонол-120,01хкк 0,001тетрафторэтилен 0,050,32 0,41СНПХ-60300,05 99,059
2 ЗаявляемП-10,15 неонол-120,02 хкк0,002тальк 0,10,32 0,41Викор-20,1 98,898
3 ПрототипП-1А0,15 неонол-120,02 хкк0,002- -0,320,41 --99,098
4Заявляем П-10,3МЛ-80 0,10хкк0,01 оксид титана0,11,9 2,45аминкор 0,594,64
5ПрототипП-1А 0,3сульфонол 0,10охк0,01 --1.9 2,45-- 95,54
6Заявляем П-10,5 МЛ-81Б0,5хромат 0,02аэросил 0,51,92,45 СНПХ-64180,594,13
7Прототип П-1А0,5 сульфонол0,5бихромат 0,01- -1,92,45 --95,14
8Заявляем П-11,0МЛ-супер 1,0хлорид железа 0,03оксид хрома1,0 2,353,0 Викор 1А1.090.62
9Прототип П-1А1,0 сульфонол1,0охк 0,03- -2,353,0 --92,62
10Заявляем П-22,0МКС 3,0сульфат алюминия 0,03оксид железа1,0 2,353,0 СНПХ-60351,087,62
11Заявляем П-22,0 нефтехим5,0охк 0,04оксид цинка 2,02,353,0 --85,61
12Заявляем П-23,0нефтенол Н3Н 8,0нитрат алюминия 0,04аэросил 2,55,06,4 --75,06
13Заявляем П-23,0нефтенол Н3 10,0ацетат хрома 0,05полисил П-13,0 5.06,4 --72,55
14Заявляем П-35,0сонкор-9701 11,0ацетат хрома 0,10оксид железа3,5 5,06,4 --69,0
15Заявляем П-36,0неонол-4 5,0ацетат хрома 0,20поливиниловый спирт 1,05,06,4 СНПХ-62011,574,90
16Заявляем П-32,0 синол ЭМ5,0сульфат хрома0,25тальк 1,57,0 8,96-- 75,29
17Заявляем П-12,0 нефтенол Н5,0хромат 0,02полисил ДФ 2,07,08,96 --75,02
18Заявляем П-22,0нефтенол 001. М5,0ацетат хрома 0,01перлит 1,57,08,96 --75,53
19Заявляем П-23,0Викор-1А 5,0бихромат 0,01оксид титана1,0 7,08,96 углеводород75,03
20ЗаявляемП-3 3,0Викор-2 5,0хкк0,03 полисил П-11,02,35 3,0марка к-во85,62
21ЗаявляемП-1 2,0Аминкор 5,0хкк0,04 полисил ДФ1,02,35 3,0нефть 5,081,61
22ЗаявляемП-1 2,0МаслоПод 5,0бихромат0,02 оксид алюминия2,0 2,353,0 дизельное топливо10,0 75,63
23Заявляем П-23,0 Нефтенол ВВД3,0охк 0,03белая сажа 2,02,353,0 гексановая фракция15,0 71,62
24Заявляем П-12,0 МКС3,0хкк 0,03тетрафторэтилен 1,01,92,45 керосин20,069,62
25Заявляем П-23,0 Неонол-45,0ацетат хрома0,10аэросил 2,01,9 2,45бензин25,0 60,55
26 ЗаявляемП-35,0 Мл-супер2,0 сульфат люминия0,20 тальк3,01,9 2,45нефрас30,0 55,45

Таблица 2.

Прочностная характеристика композиций газонаполненного предлагаемого состава и состава-прототипа при температуре 95°С.
№ составаСостав Предельная нагрузка, Па, через Пеноустойчивость состава, сут
20 час7 сут20 сут
12 345 6
1Заявляемый 14- -1
2 Заявляемый60 36-8
3Прототип 23-- 1
4Заявляемый 863545 -14
5 Прототип270 --2
6Заявляемый 2529181025 20
7Прототип 745- -3
8 Заявляемый6605 531220323
9Прототип 2030-- 5
10Заявляемый 76156302 48726
11 Заявляемый8336 709053528
12Заявляемый 76806265471 26
13Заявляемый 82036801 50527
14 Заявляемый6150 481122823
15Заявляемый 68455507510 27
16Заявляемый 64835125 23824
17 Заявляемый6385 500347026
18Заявляемый 57904411240 23
19Заявляемый 65105221 49527
20 Заявляемый5320 400825324
21Заявляемый 36623295201 23
22Заявляемый 31012592 16822
23 Заявляемый2305 200815222
24Заявляемый 2008150385 21
25Заявляемый 985591 2820
26 Заявляемый780 365-18

Таблица 3.

Прочностная характеристика композиций газонаполненного предлагаемого состава и состава-прототипа при температуре 20°С.
№ составаСостав кислотаПредельная нагрузка, Па, черезУстойчивость пены, сут
маркак-во 20 час7 сут 20 сут
12 HCl0,05 345 6
1Заявляемый HCl0,1 15-- 1
2Заявляемый ССП0,1 684518 21
3Прототип HCl0,1 2112- 8
4Заявляемый ССП0,12 980650250 68
5Прототип HCl0,12 37223076 22
6Заявляемый HCl0,12 258522631336 97
7 ПрототипHCl0.15 851603 37235
8 ЗаявляемыйСКФВ 0,1569656530 4411более 150
9Прототип HCl0,152383 20351032120
10Заявляемый ССФА0,157830 73126201 более 150
11 ЗаявляемыйССФА0,20 85058380 7135более 150
12ЗаявляемыйССБФА 0,187831 77106580более 150
13Заявляемый ССБФА0,18 850583807185 более 150
14 Заявляемыйфосфорная 0,187831 77106580более 150
15Заявляемый HCl0,18 816580356920 более 150
16 Заявляемыйортофосфорная 0,206083 59804870более 150
17Заявляемый HCl0,20 683067065680 более 150
18 ЗаявляемыйHCl 0,2065006325 5206более 150
19Заявляемый HCl0,206310 61805056более 150
20Заявляемый ССП0,25 582057064601 более 150
21 ЗаявляемыйСКФВ 0,2037853667 3008более 150
22Заявляемый HCl0,153203 30352823более 150
23Заявляемый HCl0,15 244223082101 более 150
24 ЗаявляемыйHCl 0,1221281983 1760более 150
25Заявляемый HCl0,121068 932751150
26Заявляемый ССП0,15980 771583100

Таблица 4.

Результаты фильтрации композиций заявляемого газонаполненного состава и состава-прототипа при 95°С.
№ состава Состав Проницаемость, мкм2Снижение проницаемости, K1/K2
до фильтрации, K1 после фильтрации, К2
12 345
1Заявляемый 4,323,92110
2Заявляемый 4,063,19127
3Прототип 4,153,84108
4Заявляемый 5,201,78292
5Прототип 4,533,19142
6Заявляемый 4,321,18365
7Прототип 4,752,91161
8Заявляемый 4,601,09422
9Прототип 4,802,36203
10Заявляемый 4,921,10445
11Заявляемый 5,541,28430
12Заявляемый 5,651,37411
13Заявляемый 5,831,49390
14Заявляемый 6,031,58381
15Заявляемый 6,221,46425
16Заявляемый 6,351,40453
17Заявляемый 6,501,47442
18Заявляемый 6,321,36465
19Заявляемый 5,231,108472
20Заявляемый 5,361,19 450
21Заявляемый 5,121,122 456
22Заявляемый 5,031,086 463
Синтезы из табл.3 при 20°С
6 Заявляемый6,151,67 388
7 Прототип5,482,96 185

Таблица 5.

Нефтевытесняющие свойства композиций заявляемого газонаполненного состава и состава-прототипа.
№ состава СоставНачальная нефтенасыщенность, %Коэффициент вытеснения нефти
по водеприрост общий
1 234 56
1 Заявляемый67,2 0,620,180,80
2Заявляемый 65,30,62 0,210,83
3Прототип66,5 0,620,20 0,82
4Заявляемый 64,60,63 0,230,85
5Прототип67,4 0,620,21 0,83
6Заявляемый 69,30,64 0,280,92
7Прототип68,6 0,630,22 0,85
8Заявляемый 71,80,63 0,300,93
9Прототип69,4 0,630,24 0,87
10Заявляемый 70,50,65 0,310,96
11Заявляемый72,8 0,640,30 0,94
12Заявляемый 66,30,64 0,280,92
13Заявляемый68,7 0,650,30 0,95
14Заявляемый 71,30,64 0,320,96
15Заявляемый72,0 0,640,28 0,92
16Заявляемый 67,70,65 0,300,95
17Заявляемый69,6 0,640,32 0,96
18Заявляемый 70,80,64 0,330,97
19Заявляемый71,9 0,640,32 0,96
20Заявляемый 67,20,65 0,320,97
21Заявляемый72,5 0,640,30 0,94
22Заявляемый 69,30,65 0,300,95
23Заявляемый66,9 0,650,31 0,96
24Заявляемый 70,10,64 0,320,96
25Заявляемый72,6 0,640,31 0,96
26Заявляемый 69,90,64 0,300,94

Класс C09K8/44 содержащие только органические связующие

способ крепления призабойной зоны пескопроявляющих скважин -  патент 2521236 (27.06.2014)
способ герметизации эксплуатационной колонны скважины -  патент 2520217 (20.06.2014)
способ получения акрилового реагента для изоляции водопритоков в скважине (варианты) -  патент 2503702 (10.01.2014)
обеспыливающий состав для обработки пылящих поверхностей -  патент 2502874 (27.12.2013)
способ обработки карбонатного пласта -  патент 2467157 (20.11.2012)
способ крепления призабойной зоны скважины -  патент 2467156 (20.11.2012)
компаунд эпоксиднофениленовый водосовместимый тампонажный -  патент 2458961 (20.08.2012)
быстросхватывающая тампонажная смесь (бстс) для изоляции водогазопритоков в нефтяных и газовых низкотемпературных скважинах -  патент 2439119 (10.01.2012)
набухающие в воде полимеры в качестве добавок для борьбы с поглощением рабочей жидкости -  патент 2436946 (20.12.2011)
гидрофобный полимерный тампонажный состав для нефтяных и газовых скважин -  патент 2434040 (20.11.2011)
Наверх