способ модифицирования сплавов на основе алюминия и отливка, полученная с использованием этого способа

Классы МПК:C22C1/06 с применением особых средств для рафинирования или раскисления 
C22C21/02 с кремнием в качестве следующего основного компонента
C22B9/10 с использованием рафинирующих средств или флюсов; использование материалов для этой цели
Автор(ы):, , , , , , ,
Патентообладатель(и):Открытое Акционерное Общество "МОСОБЛПРОММОНТАЖ" (RU)
Приоритеты:
подача заявки:
2007-02-14
публикация патента:

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении разнообразных изделий методами фасонного литья, в частности, корпусных деталей автомобильного двигателя, дисков автомобильных колес, корпусов радиаторов. Способ модифицирования сплавов на основе алюминия, содержащих от 5 до 13 мас.% кремния, включает введение в расплав в качестве модификаторов, по крайней мере, двух компонентов из группы: церий, лантан, неодим, празеодим, в суммарном количестве от 0,1 до 0,5 мас.% и нитрида кремния Si3 N4 в виде порошка в количестве от 0,001 до 0,05 мас.%. За счет измельчения (Al)+(Si) эвтектики повышается пластичность при сохранении высокой прочности и уменьшается пористость отливок из сплавов на основе алюминия. 2 н. и 3 з.п. ф-лы, 1 ил., 3 табл.

способ модифицирования сплавов на основе алюминия и отливка,   полученная с использованием этого способа, патент № 2334804

Формула изобретения

1. Способ модифицирования сплава на основе алюминия, содержащего от 5 до 13 мас.% кремния, включающий введение в расплав модификаторов, отличающийся тем, что в качестве модификаторов в процессе плавки в расплав вводят, по крайней мере, два компонента из группы: церий, лантан, неодим, празеодим, в суммарном количестве от 0,1 до 0,5 мас.% и нитрид кремния Si3N 4 в виде порошка в количестве от 0,001 до 0,05 мас.%.

2. Способ по п.1, отличающийся тем, что модификаторы вводят при 800-850°С.

3. Отливка из сплава на основе алюминия, содержащего от 5 до 13 мас.% кремния, отличающаяся тем, что она получена с использованием способа по п.1 или 2.

4. Отливка по п.3, отличающаяся тем, что она имеет балл пористости, не превышающий 1.

5. Отливка по п.4, отличающаяся тем, что содержание водорода в ней не превышает 0,1 см3/100 г.

Описание изобретения к патенту

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении отливок из сплавов на основе алюминия, в частности сплавов на основе системы Al-Si, структура которых должна содержать дисперсную алюминиево-кремниевую эвтектику (далее (Al)+(Si)). Из силуминов получают самые разнообразные изделия, в частности, корпусные детали автомобильного двигателя, диски автомобильных колес, корпуса радиаторов и т.д.

Силумины представляют собой важнейший класс материалов, на их долю приходится более 90% производства всех алюминиевых отливок, так как они обладают хорошей технологичностью при использовании практически всех видов литья. Высокая технологичность силуминов обусловлена образованием при кристаллизации большого количества эвтектики (Al)+(Si).

Однако силумины обладают невысокой пластичностью, что связано с неблагоприятной морфологией частиц кремния, входящих в состав эвтектики (Al)+(Si). В общем случае для нее характерно аномальное (не колониальное) строение, при котором частицы кремния имеют крупные размеры и некомпактную форму.

Для получения дисперсной эвтектики с тонкоразветвленными кристаллами кремния обычно используют малые добавки щелочных и щелочноземельных металлов (Na, Sr, Са, Ва и др.) (Строганов Г.Б., Ротенберг В.А., Гершман Г.Б. Сплавы алюминия с кремнием. М., Металлургия, 1977, 271 с.).

Известен способ модифицирования сплавов на основе алюминия за счет введения натрия в количестве ˜0,01% из солей, в частности, 45%NaCl+40%NaF+15%Na 3AlF6 [1].

Недостатком этого способа является нестабильность модифицирующего эффекта и его однократное действие (т.е. после переплава эффект пропадает). Кроме того, после модифицирования натрием существенно возрастает усадочная и газоусадочная пористость отливки (Металлические примеси в алюминиевых сплавах, А.В.Курдюмов, С.В.Инкин, B.C.Чулков, Г.Г.Шадрин. М., Металлургия, 1988, 143 с.).

Известен способ модифицирования силуминов натрием при его введении не в солях, а металлическом виде в соединении с цинком (Способ модифицирования Si-содержащих фаз в алюминиевых сплавах. Мансуров Ю.Н., Белов Н.А., Аксенов А.А., Турдиев М.Т.). Этот способ позволяет стабильно получать оптимальную концентрацию натрия в сплаве, но однократность модифицирующего эффекта и повышенная пористость в отливках сохраняются.

Наиболее близким аналогом для предложенного способа модифицирования, а также для отливки, полученной с использованием заявленного способа модифицирования, является способ модифицирования сплавов на основе алюминия при использовании добавки стронция, которую вводят в виде лигатуры на основе алюминия (Модифицирование силуминов стронцием, И.Н.Ганиев, П.А.Пархутик, А.В.Вахобов, И.Ю.Куприянова. / Под ред. К.В.Горева, Мн.: Наука и техника, 1985, 143 с.). Этот способ позволяет стабильно получать оптимальную концентрацию стронция в сплаве, а также дает возможность сохранить модифицирующий эффект после переплава. Однако в этом случае модифицирующий эффект сильно зависит от температуры выдержки расплава и других условий переплава. При температурах свыше 800°С потери стронция из расплава резко увеличиваются. Кроме того, введение стронция, так же как и введение натрия, приводит к повышению пористости в отливке.

Задачей изобретения является создание нового способа модифицирования в сплавах на основе алюминия, содержащих от 5 до 13 мас.% кремния, который бы позволял получать стабильный эффект после неоднократных переплавов и выдержки расплава при высоких температурах (до 850°С).

Техническим результатом заявленного изобретения является повышение пластичности при сохранении высокой прочности и уменьшение пористости отливок из сплавов на основе алюминия, содержащих от 5 до 13 мас.% кремния, за счет измельчения (Al)+(Si) эвтектики.

Технический результат достигается тем, что модифицирование сплавов на основе алюминия, содержащих от 5 до 13 мас.% кремния, проводят таким образом, что в процессе плавки в качестве модификаторов в расплав вводят, по крайней мере, два компонента из группы: церий, лантан, неодим, празеодим, в суммарном количестве от 0,1 до 0,5 мас.% и нитрид кремния (Si3N4) в виде порошка в количестве от 0,001 до 0,05 мас.%. Получают отливку с использованием такого способа модифицирования.

Модификаторы могут быть введены в расплав при 800-850°С.

Отливка, полученная с использованием заявленного способа модифицирования, имеет балл пористости, не превышающий 1, при этом содержание водорода в ней не превышает 0,1 см3/100 г.

Отливка, полученная с использованием заявленного способа модифицирования, имеет балл пористости, не превышающий 1, при этом содержание водорода в ней не превышает 0,1 см 3/100 г.

Сущность изобретения состоит в следующем.

В отличие от щелочных и щелочноземельных металлов, склонных к угару во время плавки при повышенных температурах, РЗМ характеризуются повышенной устойчивостью при длительных нагревах. Редкоземельные металлы (РЗМ), в частности Се, La, Pr и Nd, в системах Al-Si-РЗМ образуют тройные эвтектики типа (Al)+(Si)+X, где Х - фаза, содержащая алюминий, кремний и РЗМ, которые стабилизируются нитридом кремния Si3N4, что и является основным фактором диспергирования кремниевой фазы эвтектического происхождения, а следовательно благоприятно влияют на равномерность структуры и соответственно на повышение пластичности, снижение пористости в получаемых отливках.

Данный способ может быть применен к различным силуминам, в частности, стандартным АК12, АК9М2, АК8М, АК7, АК5М и др.

Пример 1. Силумин АК12пч с добавками РЗМ.

Чушки промышленного сплава (11,4% Si, 0,15% Fe, сумма остальных примесей менее 0,2%) были расплавлены в электрической печи сопротивления типа СНОЛ (в графитошамотных тиглях). Добавки РЗМ вводили в металлическом виде, а нитрид кремния в виде дисперсного порошка в количествах, приведенных в табл.1, от веса чушки в мас.%. В композицию №4 дополнительно вводили кремний до общей концентрации 13%. Композиция №7 с добавкой стронция представляет собой прототип. Ликвидус экспериментальных сплавов (T L) по данным термического анализа находился в пределах 576-584°С. Температура расплава (ТM ) при вводе РЗМ составляла: для композиций №№1-3, 6 и 7 - 680°С (ТM˜TL+100), для композиции №4 - 630°С (ТM˜TL+150) и для композиции №5 730°С (ТM˜T L+150). Механические свойства сплавов определяли на отдельно отлитых образцах (литье в кокиль) с диаметром рабочей зоны 10 мм. Механические свойства в отливках определяли на цилиндрических образцах по ГОСТ 1497-84. Балл пористости в отливках определяли по ГОСТ 1583-93, а содержание водорода - по методике ALSCAN - определение концентрации водорода в жидком металле путем измерения коэффициента теплопроводности азота, продуваемого через расплав алюминия, при насыщении его водородом.

Таблица 1

Состав экспериментальных сплавов, приготовленных на основе промышленного силумина АК12пч
СплавКонцентрация, мас.% (Al-основа) 1)
Si FeCuMg MnСеLa PrNd
1 АК12пч11,4 0,1530,0340,023 0,020- ---
2АК12пч + 0,05%РЗМ + 0,0001% Si3N4 11,40,1530,034 0,0230,020 0,0280,0140,003 0,008
3 АК12пч + 0,1%РЗМ + 0,001% Si3N 411,40,154 0,0340,023 0,0200,0570,028 0,0060,016
4АК12пч + 0,2%РЗМ + 0,01% Si3N4 13,00,1540,034 0,0230,020 0,1-- 0,1
5АК12пч + 0,5%РЗМ + 0,05% Si3N4 11,40,155 0,0340,0230,020 0,250,25 --
6 АК12пч + 1%РЗМ + 0,1% Si3 N411,4 0,1550,0340,023 0,0200,5 0,30,10,1
7АК12пч + 0,03% Sr 11,40,155 0,0340,0230,020 -- --

Из таблицы 2 видно, что только при заявленных концентрациях РЗМ и нитрида кремния (составы 3-5) достигаются наилучшие значения относительного удлинения, что обусловлено высокой дисперсностью эвтектики (Al)+(Si). При этом балл пористости и содержание водорода сохраняются на уровне базового сплава. В вариантах 1-2 и 6 пластичность меньше требуемого уровня, а вариант - прототип (состав 7) характеризуется повышенным баллом пористости, а также высоким содержанием водорода. Типичная структура (СЭМ) сплава АК12 пч приведена на чертеже, где а - без модифицирования, б - модифицированная (0,2% способ модифицирования сплавов на основе алюминия и отливка,   полученная с использованием этого способа, патент № 2334804 РЗМ+0,01% Si3N4 ).

Таблица 2

Механические свойства (литое состояние), балл пористости и содержание водорода экспериментальных сплавов, приготовленных на основе промышленного силумина АК12пч
Сплав (№по табл.1) способ модифицирования сплавов на основе алюминия и отливка,   полученная с использованием этого способа, патент № 2334804 в, МПа1) способ модифицирования сплавов на основе алюминия и отливка,   полученная с использованием этого способа, патент № 2334804 , %1)БП 2)%H3)
1195 3,310,08
2204 3,310,09
3205 4,910,07
4200 7,210,08
5211 5,310,09
6204 2,820,15
7206 7,120,32
1) средние отклонения: для способ модифицирования сплавов на основе алюминия и отливка,   полученная с использованием этого способа, патент № 2334804 в - 15 МПа, для способ модифицирования сплавов на основе алюминия и отливка,   полученная с использованием этого способа, патент № 2334804 - 0,5%, 2) балл пористости, 3) содержание водорода.

Пример 2. На примере промышленного силумина АК5М, содержащего 5% Si, 1,3% Cu, 0,5% Mg, 0,3% Mn, 0,3% Fe (сумма остальных примесей менее 0,2%) рассматривали влияние температуры ввода модификаторов и переплава на механические свойства отливок. Сравнивали два способа модифицирования: 1 способ (заявляемый) с добавками 0,2% способ модифицирования сплавов на основе алюминия и отливка,   полученная с использованием этого способа, патент № 2334804 РЗМ и 0,01% Si3N4 , 2 - способ (прототип) - с добавкой 0,03% Sr. Ликвидус экспериментальных сплавов (TL) по данным термического анализа находился около 620°С. Температура расплава (Т М) при вводе комплекса РЗМ и стронция составляла 720, 800 и 850°С (TM˜T L+100, 180 и 230 соответственно). Отливки сплавов переплавляли, расплав выдерживали при 800 и 850°С в течение 1 часа, после чего расплав охлаждали до 720°С и заливали в стальные изложницы. Механические свойства отливок определяли после термообработки Т6 (закалка и старение). Остальные параметры эксперимента аналогичны предыдущему примеру 1.

Результаты, приведенные в табл.3, показывают, что предлагаемый способ допускает как минимум 3 переплава при сохранении относительного удлинения. Известный способ после первого же переплава не обеспечивает модифицирующего эффекта, что связано с потерей стронция. Это приводит к потере механических свойств, особенно относительного удлинения.

Таблица 3

Влияние количества переплавов (N) и температуры расплава (ТM ) на механические свойства (Т6) силумина АК5М
Способ модифицированияТ М, °CN способ модифицирования сплавов на основе алюминия и отливка,   полученная с использованием этого способа, патент № 2334804 в, МПаспособ модифицирования сплавов на основе алюминия и отливка,   полученная с использованием этого способа, патент № 2334804 , %
0,2% способ модифицирования сплавов на основе алюминия и отливка,   полученная с использованием этого способа, патент № 2334804 РЗМ720 2854,5
8000280 4,4
1292 4,8
2 2904,5
8500278 4,3
1283 4,4
2 2854,3
0,03% Sr720 2924,9
8000272 3,3
1265 2,2
2 2591,9
8500258 2,4
1255 1,7
2 2491,2

Класс C22C1/06 с применением особых средств для рафинирования или раскисления 

способ модифицирования литых сплавов -  патент 2525967 (20.08.2014)
способ рафинирования алюминиевых сплавов -  патент 2522997 (20.07.2014)
состав для модифицирования и рафинирования железоуглеродистых и цветных сплавов (варианты) -  патент 2502808 (27.12.2013)
способ модифицирования алюминиево-кремниевых сплавов -  патент 2475550 (20.02.2013)
способ получения модификатора для доэвтектических алюминиево-кремниевых сплавов -  патент 2475334 (20.02.2013)
способ получения слитков из алюминиевых сплавов, содержащих литий -  патент 2463364 (10.10.2012)
флюс для плавки и рафинирования магниевых сплавов, содержащих иттрий -  патент 2451762 (27.05.2012)
флюс для защитного покрытия расплава латуни -  патент 2440868 (27.01.2012)
расплавленные соли для очистки стронцийсодержащих магниевых сплавов -  патент 2417266 (27.04.2011)
способ рафинирования алюминиевых сплавов -  патент 2396365 (10.08.2010)

Класс C22C21/02 с кремнием в качестве следующего основного компонента

алюминиевый сплав для прецизионного точения серии аа 6ххх -  патент 2522413 (10.07.2014)
порошковый композиционный материал -  патент 2509817 (20.03.2014)
активный материал отрицательного электрода на основе кремниевого сплава для электрического устройства -  патент 2508579 (27.02.2014)
способ получения наноразмерных порошков алюминий-кремниевых сплавов -  патент 2493281 (20.09.2013)
способ модифицирования алюминиево-кремниевых сплавов -  патент 2475550 (20.02.2013)
быстрозакристаллизованный сплав на основе алюминия для изготовления поршней -  патент 2468105 (27.11.2012)
содержащие магний высококремниевые алюминиевые сплавы, используемые в качестве конструкционных материалов, и способ их изготовления -  патент 2463371 (10.10.2012)
способ приготовления мелкокристаллической алюминиево-кремниевой лигатуры -  патент 2448180 (20.04.2012)
антифрикционный сплав на основе алюминия -  патент 2441932 (10.02.2012)
способ модифицирования чугуна и силумина -  патент 2439166 (10.01.2012)

Класс C22B9/10 с использованием рафинирующих средств или флюсов; использование материалов для этой цели

Наверх