сталь низколегированная свариваемая

Классы МПК:C22C38/50 с титаном или цирконием
C22C38/28 с титаном или цирконием
C22C38/16 содержащие медь
C22C38/14 содержащие титан или цирконий
Автор(ы):, , , , , , , , , , , ,
Патентообладатель(и):Открытое акционерное общество "Северсталь" (RU)
Приоритеты:
подача заявки:
2006-09-05
публикация патента:

Изобретение относится к области металлургии, а именно к низколегированным сталям, используемым для изготовления сварных нефте- и газопроводов, эксплуатируемых в условиях Крайнего Севера. Сталь содержит углерод, кремний, марганец, ванадий, ниобий, алюминий, титан, азот, хром, никель, медь, серу, фосфор, кальций и железо, при следующем соотношении компонентов, мас.%: углерод 0,05-0,15, кремний 0,30-0,90, марганец 0,40-0,90, ванадий 0,04-0,15, ниобий 0,02-0,08, алюминий 0,02-0,06, титан 0,005-0,03, азот не более 0,008, хром не более 0,30, никель не более 0,30, медь не более 0,30, сера не более 0,005, фосфор не более 0,018, кальций 0,001-0,006, железо - остальное. Сталь имеет в структуре феррит с номером зерна не менее 9 при структурной полосчастости не более 2 баллов и неметаллические включения не крупнее 3 баллов. Суммарное содержание хрома, никеля и меди соответствует условию: Cr+Ni+Cuсталь низколегированная свариваемая, патент № 2335568 0,6 мас.%. Повышаются коррозионная стойкость, хладостойкость и выход годного горячекатаного полосового проката. 3 табл.

Формула изобретения

Низколегированная свариваемая сталь, содержащая углерод, кремний, марганец, ванадий, ниобий, алюминий, титан, азот, хром, никель, медь, серу, фосфор, кальций и железо, отличающаяся тем, что она содержит компоненты при следующем соотношении, мас.%:

углерод0,05-0,15
кремний0,30-0,90
марганец0,40-0,90
ванадий0,04-0,15
ниобий0,02-0,08
алюминий0,02-0,06
титан0,005-0,03
азотне более 0,008
хромне более 0,30
никельне более 0,30
медьне более 0,30
серане более 0,005
фосфорне более 0,018
кальций0,001-0,006
железоостальное,

при этом имеет в структуре феррит с номером зерна не менее 9, при структурной полосчастости не более 2 баллов и неметаллические включения не крупнее 3 баллов, а суммарное содержание хрома, никеля и меди соответствует условию

Cr+Ni+Cuсталь низколегированная свариваемая, патент № 2335568 0,6 мас.%.

Описание изобретения к патенту

Изобретение относится к металлургии, конкретно к низколегированным сталям, используемым для изготовления сварных нефте- и газопроводов, пригодных к эксплуатации в условиях Крайнего Севера.

Горячекатаная листовая сталь, низколегированная, свариваемая для магистральных нефте- и газопроводов, работающих в условиях Крайнего Севера, должна сочетать высокую прочность, пластичность, коррозионную стойкость и хладостойкость (таблица 1).

сталь низколегированная свариваемая, патент № 2335568

Известна низколегированная сталь следующего химического состава, мас.% [1]:

Углерод0,03-0,11
Марганец0,90-1,80
Кремний0,06-0,60
Хром0,005-0,30
Никель0,005-0,30
Ванадий0,02-0,12
Ниобий0,03-0,10
Титан0,010-0,040
Алюминий0,010-0,055
Кальций0,001-0,005
Сера0,0005-0,008
Фосфор0,0005-0,010
Азот0,001-0,012
Медь0,005-0,25
Сурьма0,0001-0,005
Олово0,0001-0,007
Мышьяк0,0001-0,008
Железоостальное,

причем суммарное содержание фосфора Р, сурьмы Sb, мышьяка As и олова Sn должно удовлетворять соотношению: 2P+Sn+Sb+As<0,035.

Недостатки стали известного состава состоят в том, что в горячекатаном состоянии она характеризуется низкими механическими свойствами, коррозионной стойкостью и хладостойкостью. Сталь не технологична в производстве, так как требует проведения специальных мероприятий по удалению фосфора, введению сурьмы, олова и мышьяка в регламентированных количествах. Кроме того, сурьма, олово и мышьяк существенно ухудшают коррозионную стойкость и свариваемость стали, вследствие чего введение их в качестве легирующих элементов не представляется целесообразным.

Известна также сталь следующего химического состава, мас.%:

Углерод0,05-0,15
Кремний0,15-0,60
Марганец1,2-2,0
Ванадий0,03-0,15
Ниобий0,005-0,10
Алюминий0,006-0,06
Азот0,002-0,015
Титан0,005-0,10
Хром0,01-0,30
Никель0,01-0,30
Медь0,01-0,30
РЗМ0,002-0,050
Серане более 0,01
Фосфорне более 0,02
Железоостальное [2].

Недостатки данной стали состоят в том, что изготовленные из нее горячекатаные полосы имеют низкую коррозионную стойкость и хладостойкость.

Наиболее близкой по своему химическому составу и свойствам к предлагаемой стали является низколегированная свариваемая сталь, содержащая углерод, кремний, марганец, ванадий, ниобий, титан, азот, хром, никель, медь, серу, фосфор и железо при следующем соотношении, мас.%:

Углерод0,02-0,35
Кремний0,01-1,0
Марганец0,02-2,5
Ванадийсталь низколегированная свариваемая, патент № 2335568 0,2
Ниобий сталь низколегированная свариваемая, патент № 2335568 0,1
Алюминий 0,001-0,1
Титан 0,005-0,2
Азот 0,0004-0,01
Хром сталь низколегированная свариваемая, патент № 2335568 1,0
Никель сталь низколегированная свариваемая, патент № 2335568 1,0
Медь сталь низколегированная свариваемая, патент № 2335568 1,0
Сера сталь низколегированная свариваемая, патент № 2335568 0,01
Фосфор 0,005-0,1
Железо остальное [3].

Недостатки данной стали состоят в том, что изготовленные из нее горячекатаные полосы имеют низкую коррозионную стойкость и хладостойкость. Это снижает выход годного горячекатаного полосового проката.

Техническая задача, решаемая изобретением, состоит в повышение коррозионной стойкости, хладостойкости и выхода годного горячекатаного полосового проката.

Для этого низколегированная свариваемая сталь, содержащая углерод, кремний, марганец, ванадий, ниобий, алюминий, титан, азот, хром, никель, медь, серу, фосфор и железо, дополнительно содержит кальций при следующем соотношении компонентов, мас.%:

Углерод0,05-0,15
Кремний0,30-0,90
Марганец0,40-0,90
Ванадий0,04-0,15
Ниобий0,02-0,08
Алюминий0,02-0,06
Титан0,005-0,03
Азотне более 0,008
Хромне более 0,30
Никельне более 0,30
Медьне более 0,30
Серане более 0,005
Фосфорне более 0,018
Кальций0,001-0,006
Железоостальное,

при этом она содержит в структуре феррит с номером зерна не менее 9 при структурной полосчатости не более 2 баллов и неметаллические включения не крупнее 3 баллов, а суммарное содержание хрома, никеля и меди соответствует условию:

Cr+Ni+Cuсталь низколегированная свариваемая, патент № 2335568 0,6 мас.%.

Углерод в стали предложенного состава определяет ее прочностные свойства. Снижение содержания углерода менее 0,05% приводит к падению прочности ниже допустимого уровня. Увеличение содержания углерода сверх 0,15% ухудшает пластичность и вязкость стали.

Кремний раскисляет и упрочняет сталь, повышает ее упругие свойства. При содержании кремния менее 0,30% прочность стали недостаточна. Увеличение содержания кремния более 0,90% приводит к охрупчиванию стали, ухудшению ее пластичности.

Марганец введен для раскисления и повышения прочности стали, связывания примесной серы в сульфиды. При содержании марганца менее 0,40% снижается прочность стали и вязкость при отрицательных температурах, что приводит к увеличению отбраковки. Повышение концентрации марганца сверх 0,90% ухудшает пластичность стали, снижает хладостойкость и повышает отношение сталь низколегированная свариваемая, патент № 2335568 т/сталь низколегированная свариваемая, патент № 2335568 в более 0,7.

Ванадий и ниобий образуют с углеродом карбиды VC, NbC, а с азотом - нитриды VN, NbN. Мелкие нитриды и карбонитриды ванадия и ниобия располагаются по границам зерен и субзерен, тормозят движение дислокации и тем самым упрочняют сталь. При содержании ванадия менее 0,04% и ниобия менее 0,02% их влияние недостаточно велико, свойства стали ниже допустимого уровня. Увеличение концентрации ванадия более 0,15% или ниобия более 0,08% вызывает дисперсионное твердение проката и приводит к их выделению на границах зерен в виде интерметаллических соединений. Это ухудшает свойства и снижает выход годных горячекатаных полос.

Алюминий является раскисляющим и модифицирующим элементом. При содержании алюминия менее 0,02% его воздействие проявляется слабо, сталь имеет низкие механические свойства. Увеличение содержания алюминия более 0,06% приводит к графитизации стали, потере прочности, ухудшению хладостойкости, а также ухудшает качество поверхности горячекатаного проката.

Титан является сильным карбидообразующим элементом, упрочняющим сталь. Снижение концентрации титана менее 0,005% не оказывает благоприятного влияния на механические свойства горячекатаных полос. Однако повышение содержания титана до 0,030% оказывает положительное влияние на формирование структуры сварного соединения и околошовной зоны. Повышение содержания титана более 0,030% делает сталь не технологичной при разливке, вследствие чего ухудшается выход годного по качеству поверхности.

Азот является карбонитридообразующим элементом, упрочняющим сталь. Однако повышение концентрации азота сверх 0,008% приводит к снижению вязкостных свойств при отрицательных температурах, что недопустимо.

Хром, никель и медь способствуют повышению прочностных свойств и стойкости против питтинговой коррозии, но при содержании каждого из этих элементов более 0,30% имеет место снижение хладостойкости стали при отрицательных температурах. Причем лучшие свойства по коррозионной стойкости и свариваемости стали достигаются при суммарном содержании этих элементов не более 0,6%.

Фосфор в количестве не более 0,018% целиком растворяется в сталь низколегированная свариваемая, патент № 2335568 -железе, что ведет к упрочнению металлической матрицы. Однако увеличение содержания фосфора более 0,018% вызывает охрупчивание стали и снижение хладостойкости.

Сера является вредной примесью, снижающей пластические и вязкостные свойства. При концентрации серы не более 0,005% ее вредное действие проявляется слабо и не приводит к заметному снижению механических свойств стали. В то же время более глубокое удаление серы удорожает сталь, делает ее производство нерентабельным.

Кальций обеспечивает рафинирование границ зерен микроструктуры стали. Действуя как поверхностно-активное вещество, он очищает межзеренные границы от нежелательных примесей, благодаря чему достигается одновременное повышение ударной вязкости при отрицательных температурах и коррозионной стойкости стали. При снижении содержания кальция менее 0,001% его положительное влияние проявляется слабо. Увеличение содержания кальция сверх 0,006% ведет к увеличению количества неметаллических включений, что отрицательно сказывается на механических свойствах горячекатаного проката.

При содержании в структуре стали мелкозернистого структурно свободного феррита с номером зерна не менее 9 баллов при структурной полосчатости не более 2 баллов имеет место дополнительное повышение стойкости стали против локальной коррозии и хладостойкости. Снижение номера зерна феррита менее 9 баллов, как и повышение структурной полосчатости более 2 баллов ухудшает коррозионную стойкость и хладостойкость стали.

Экспериментально установлено, что скопления алюмокальциевых, сульфидных, алюмокальциевосиликатных включений крупнее 3 баллов приводят к разрушению образцов при коррозионных испытаниях, что недопустимо. Кроме того, неметаллические включения крупнее 3 баллов снижают хладостойкость стали, снижают выход годных горячекатаных полос.

Сталь выплавляли в кислородном конвертере, раскисляли ферромарганцем, феррокремнием, ферросилицием, легировали феррованадием, феррониобием, вводили металлический алюминий, ферротитан, силикокальций. Проводили десульфурацию и дефосфорацию расплава, продувку аргоном. Сталь подвергали непрерывной разливке в слябы и горячей прокатке на непрерывном широкополосном стане 2000 в полосы толщиной 9,0 мм с температурой конца прокатки Ткп=880°С, после чего охлаждали водой до температуры Тсм=590°С и сматывали в рулоны.

В таблице 2 приведены химические составы сталей с различным содержанием легирующих элементов и примесей, а в таблице 3 - свойства этих же сталей и выход годных горячекатаных полос.

Как следует из таблиц 2 и 3, горячекатаные полосы из сталей предложенного состава (составы №2-5) имеют повышенную коррозионную стойкость, хладостойкость (ударную вязкость при отрицательных температурах). Благодаря этому достигается максимальный выход годного горячекатаного полосового проката.

В случаях запредельных значений концентрации легирующих элементов и примесей (составы №1 и 6), а также при использовании стали известного химического состава (состав №7), принятой в качестве прототипа, коррозионная стойкость и хладостойкость стали в горячекатаном состоянии ухудшаются.

В качестве базового объекта при оценке технико-экономической эффективности предложенной стали выбрана сталь-прототип. Использование стали предложенного состава позволит повысить рентабельность производства магистральных труб для нефте- и газопроводов на 20-30%.

Источники, использованные при составлении описания изобретения

1. Патент Российской Федерации №2141002, МПК С22С 38/60, 1999 г.

2. Авторское свидетельство СССР №863707, МПК С22С 38/58, 1981 г.

3. Заявка JP 2005-146395 А, МПК С22С 38/58, 09.06.2005 г. - прототип.

Таблица 2
Химический состав низколегированных сталей
№ составаСодержание химических элементов, масс.%Параметры микроструктуры
СSi MnVNb AlTiN CrNiCu SРСа FeCr+Ni+Cu№ зерна ферритаБалл полосчатости Балл неметалл. включен.
1. 0,040,2 0,30,030,01 0,010,0040,005 0,10,3 0,30,0030,013 -Основа 0,77-83 3
2.0,05 0,30,4 0,040,020,02 0,0050,006 0,10,10,2 0,0030,0140,001 -:-0,4 911
3.0,10 0,60,60,09 0,050,040,017 0,0070,2 0,20,10,004 0,0160,003-:- 0,510 11
4. 0,110,7 0,50,100,06 0,050,0180,007 0,30,1 0,10,0050,017 --:- 0,592 2
5.0,15 0,90,9 0,150,080,06 0,0300,008 0,30,10,2 0,0050,0180,006 -:-0,6 1023
6.0,16 1,01,00,16 0,090,070,032 0,0090,4 0,40,40,006 0,0190,007-:- 1,211 34
7. 0,070,5 1,90,080,09 0,010,0860,013 0,20,3 0,20,0080,018 --:- 0,78-94 4

сталь низколегированная свариваемая, патент № 2335568

Класс C22C38/50 с титаном или цирконием

трубная сталь -  патент 2525874 (20.08.2014)
аустенитно-ферритная сталь с высокой прочностью -  патент 2522914 (20.07.2014)
фольга из нержавеющей стали и носитель катализатора для устройства очистки выхлопного газа, использующий эту фольгу -  патент 2518873 (10.06.2014)
стали со структурой пакетного мартенсита -  патент 2507297 (20.02.2014)
сталь -  патент 2502821 (27.12.2013)
теплостойкая сталь для водоохлаждаемых изложниц -  патент 2494167 (27.09.2013)
трубная заготовка из легированной стали -  патент 2480532 (27.04.2013)
способ производства холоднокатаной ленты для холодной вырубки -  патент 2479643 (20.04.2013)
способ производства холоднокатаной ленты из низкоуглеродистых марок стали -  патент 2479641 (20.04.2013)
низколегированная литейная сталь -  патент 2467089 (20.11.2012)

Класс C22C38/28 с титаном или цирконием

нержавеющая сталь с хорошей коррозионной стойкостью для топливного элемента и способ ее получения -  патент 2528520 (20.09.2014)
нержавеющая сталь, обладающая хорошими проводимостью и пластичностью, для применения в топливном элементе, и способ ее производства -  патент 2518832 (10.06.2014)
способ производства проката из низколегированной стали для изготовления элементов конструкций нефтегазопроводов -  патент 2500820 (10.12.2013)
ферритная нержавеющая сталь, характеризующаяся высокой жаростойкостью -  патент 2458175 (10.08.2012)
способ производства листов из низколегированной трубной стали класса прочности х60 -  патент 2458156 (10.08.2012)
сталь -  патент 2445395 (20.03.2012)
штамповая сталь -  патент 2445394 (20.03.2012)
ферритная нержавеющая сталь с превосходной жаростойкостью и вязкостью -  патент 2443796 (27.02.2012)
коррозионно-стойкая сталь для насосно-компрессорных и обсадных труб и нефтегазодобывающего оборудования -  патент 2437955 (27.12.2011)
коррозионно-стойкая сталь для нефтегазодобывающего оборудования -  патент 2437954 (27.12.2011)

Класс C22C38/16 содержащие медь

способ производства высокопроницаемой анизотропной электротехнической стали -  патент 2516323 (20.05.2014)
способ получения металлоизделия с заданным структурным состоянием -  патент 2516213 (20.05.2014)
конструкционная сталь -  патент 2478728 (10.04.2013)
способ производства листового проката -  патент 2465347 (27.10.2012)
способ получения текстурированной кремнистой стали, содержащей медь -  патент 2457260 (27.07.2012)
способ изготовления ориентированной si стали с высокими электромагнитными характеристиками -  патент 2450062 (10.05.2012)
способ производства листового проката -  патент 2434951 (27.11.2011)
способ производства холоднокатаных полос низколегированной стали класса прочности 260 -  патент 2432404 (27.10.2011)
способ производства низкоуглеродистой холоднокатаной стали для штамповки и последующего эмалирования -  патент 2424328 (20.07.2011)
сталь конструкционная с высокой ударной вязкостью при криогенных температурах -  патент 2414520 (20.03.2011)

Класс C22C38/14 содержащие титан или цирконий

способ изготовления высокопрочного холоднокатаного стального листа с превосходной обрабатываемостью -  патент 2528579 (20.09.2014)
стальной лист, обладающий превосходной формуемостью, и способ его производства -  патент 2527506 (10.09.2014)
высокопрочный холоднокатаный стальной лист, пригодный для химической конверсионной обработки, и способ его изготовления -  патент 2525013 (10.08.2014)
высокопрочные холоднокатаные стальные листы, обладающие превосходным качеством поверхности после штамповки, и способы их производства -  патент 2524031 (27.07.2014)
стальной лист и стальной лист с покрытием, обладающий превосходной формуемостью, и способ его производства -  патент 2524030 (27.07.2014)
холоднокатаный стальной лист, обладающий превосходной сгибаемостью и способ его производства -  патент 2524021 (27.07.2014)
покрытый сплавом на основе цинка стальной материал с превосходной стойкостью к растрескиванию из-за охрупчивания расплавленным металлом -  патент 2518870 (10.06.2014)
горячекатаный стальной лист и способ его изготовления -  патент 2518830 (10.06.2014)
высокопрочной стальной лист, обладающий превосходной способностью к термическому упрочнению и формуемостью, и способ его производства -  патент 2514743 (10.05.2014)
холоднокатаный стальной лист, обладающий превосходной формуемостью, и способ его производства -  патент 2511000 (10.04.2014)
Наверх