способ количественного определения атомов щелочного металла

Классы МПК:G01N23/222 с использованием нейтронов
Автор(ы):, , , , ,
Патентообладатель(и):ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ РОССИЙСКИЙ НАУЧНЫЙ ЦЕНТР "Курчатовский институт" (RU)
Приоритеты:
подача заявки:
2007-04-26
публикация патента:

Использование: для количественного определения атомов щелочного металла. Сущность: заключается в том, что вакуумную камеру с помещенным в нее образцом пиролитического графита обезгаживают, затем подают в нее пары атомов щелочного металла и выдерживают образец при повышенной температуре, при этом образец пиролитического графита с сорбированными атомами щелочного металла облучают в другом объеме нейтронным потоком, переводя атомы щелочного металла в изотопы-гамма-излучатели, после чего определяют количество атомов щелочного металла методом гамма-спектрометрии. Технический результат: повышение чувствительности и ускорения процесса определения малого количества (менее 1 мкг) атомов щелочного металла. 2 з.п. ф-лы.

Формула изобретения

1. Способ количественного определения атомов щелочного металла, заключающийся в том, что вакуумную камеру с помещенным в нее образцом пиролитического графита обезгаживают, затем подают в нее пары атомов щелочного металла и выдерживают образец при повышенной температуре, отличающийся тем, что образец пиролитического графита с сорбированными атомами щелочного металла облучают в другом объеме нейтронным потоком, переводя атомы щелочного металла в изотопы-гамма-излучатели, после чего определяют количество атомов щелочного металла методом гамма-спектрометрии.

2. Способ по п.1, отличающийся тем, что величину нейтронного потока выбирают в диапазоне 1012-1013 нейтрон/см2 с.

3. Способ по п.1, отличающийся тем, что подают пары атомов щелочного металла при давлении ниже 10-5 Па.

Описание изобретения к патенту

Изобретение относится к контрольно-измерительной технике и может использоваться при детектировании малого количества атомов щелочного металла (ЩМ), создании контролируемых источников паров (атомов) щелочных металлов, а также для контроля различных процессов в нанотехнологии.

Известны способы количественного определения сорбции атомов различных элементов твердым телом, например, а.с. СССР №928460, опубл. 15.05.82, в котором количество атомов, внедренных в образец, определяют по току ионизации.

Известны способы количественного определения сорбции атомов твердым телом, в том числе и атомов щелочного металла в системах графит - щелочной металл (А.Г.Каландаришвили. Источники рабочего тела для термоэмиссионных преобразователей энергии. М., Энергоатомиздат, 1993, с.180-203; а.с. СССР №1601562, опубл. 23.10.90).

В этих способах количество щелочного металла, сорбируемого графитом, определяют по изменению веса графита или изменению линейных размеров графитового образца.

Эти способы не позволяют измерять количество щелочного металла с точностью менее 1 мкг, кроме того, эти способы очень трудоемки, длительны по времени.

За прототип принят гравиметрический способ определения количества щелочного металла в пиролитическом ориентированном образце графита (А.Г.Каландаришвили. Источники рабочего тела для термоэмиссионных преобразователей энергии. М., Энергоатомиздат, 1993, с.195), заключающийся в том, что в вакуумной камере с установленным на пружинной подвеске образцом пиролитического графита весом 1-3 г проводят предварительное обезгаживание элементов конструкции вакуумной камеры при плавном повышении температуры камеры до 400°С и графита до 950°С при изменении вакуума от 1·10-3 Па до 1·10-5 Па. При достижении вакуума 1·10-5 Па в камеру подают пары ЩМ, например, давление паров цезия устанавливают от 1·10 2 Па до 3·102 Па, а температура графита в этом случае поддерживается в диапазоне 300-900°С. Процесс насыщения пиролитического графита ЩМ контролируют по удлинению пружинной подвески, для этого режим насыщения выбирают так, чтобы процесс заполнения графита протекал медленно, а затем содержание щелочного металла в системе графит - ЩМ определяют по градуировочным кривым.

Современные технологии, особенно нанотехнологии, требуют точного и быстрого определения малых количеств веществ (менее 1 мкг или эквивалентного монослойному покрытию 1 см2), чего не обеспечивает данный способ, поскольку для каждого вещества нужно свое калибровочное измерение, для детектирования малых количеств атомов - при малых потоках, например, при давлениях паров цезия 10 -3-10-7 Па для накопления 1 мкг потребуется несколько недель непрерывной работы.

Техническим результатом, на который направлено изобретение, является повышение чувствительности и ускорения процесса определения малого количества (менее 1 мкг) атомов щелочного металла.

Для этого предложен способ количественного определения атомов щелочного металла, заключающийся в том, что вакуумную камеру с помещенным в нее образцом пиролитического графита обезгаживают, затем подают в нее пары щелочного металла и выдерживают образец при повышенной температуре, после чего образец пиролитического графита с сорбированными атомами щелочного металла облучают в другом объеме нейтронным потоком, переводя атомы щелочного металла в изотопы-гамма-излучатели, и определяют количество атомов щелочного металла методом гамма-спектрометрии.

При этом величину нейтронного потока выбирают в диапазоне 1012-1013 нейтрон/см 2·с.

Пары атомов щелочного металла подают при давлении ниже 10-5 Па.

Данный способ основан на том, что гамма-спектрометрическим методом можно определять очень малые количества - до 10-12 г, атомов, являющихся гамма-излучателями. Для этого переводят атомы, сервированные в графит, в изотопы-гамма-излучатели путем облучения их нейтронным потоком, например, в ядерном реакторе. Также этим способом можно определить количество атомов паров бария (группа щелочно-земельных металлов). От величины нейтронного потока зависит время активации сервированных атомов, чем больше величина потока, тем меньше время облучения, на практике величина потока нейтронов должна быть не ниже 1012-10-13 нейтрон/см2·с.

Это позволяет при медленно протекающих процессах - низких давлениях паров ЩМ (например, при давлении ˜10-7 Па) контролировать насыщение образца на уровне менее 10 -8 г, при этом время выдержки образца в вакуумной камере будет составлять порядка 30-40 минут (эта величина будет зависеть от потока атомов конкретного ЩМ). Этот способ можно использовать и при определении любого количества атомов, но наиболее заметные преимущества способа проявляются при определении малых количеств атомов.

Способ осуществляется следующим образом на примере цезия.

В вакуумную камеру помещают образец пиролитического графита весом 1-3 грамма. Затем все элементы конструкции вакуумной камеры обезгаживают при температуре ˜400°С, а образец графита - при 950°С в течение 2-4 часов. Вакуум во время обезгаживания плавно повышают от 1·10-3 Па до 1·10-5 Па. По окончании процесса обезгаживания температуру вакуумной камеры устанавливают на 30-50°С выше температуры источника пара цезия, а температуру пирографита варьируют в диапазоне 300-900°С. Затем подают пары цезия в вакуумную камеру.

При указанном давлении выдерживают образец в течение не менее 30 минут. По окончании процесса насыщения пирографита парами цезия образец переносят в другой объем (например, ядерный реактор), где облучают нейтронным потоком 10 12-1013 нейтрон/см 2·с. Время облучения зависит от предполагаемого количества атомов и его нейтронно-физических свойств, например, используя известное выражение скорости накопления радиоактивного изотопа, расчетное время для активации 1·10-8 граммов цезия Cs133 в Cs 134 потоком 1012 нейтрон/см 2·с требуется около 24 часов. После нейтронного облучения образец пиролитического графита с сорбированным и активированным веществом помещают в гамма-спектрометр, где по активности изотопа Cs134 определяют количество атомов вещества.

Таким образом, данный способ позволит детектировать малые количества веществ с высокой чувствительностью при снижении времени и трудоемкости измерений.

Класс G01N23/222 с использованием нейтронов

мобильный обнаружитель опасных скрытых веществ (варианты) -  патент 2524754 (10.08.2014)
способ и устройство для обнаружения алмазов в кимберлите -  патент 2521723 (10.07.2014)
способ неинтрузивного обнаружения химического элемента -  патент 2516186 (20.05.2014)
способ определения золотоносности горных пород -  патент 2507509 (20.02.2014)
устройство для обнаружения и идентификации скрытых опасных веществ под водой -  патент 2503955 (10.01.2014)
устройство для обнаружения и индентификации скрытых опасных веществ под водой (варианты) -  патент 2503954 (10.01.2014)
способ элементного анализа сред и реализующее его устройство -  патент 2478934 (10.04.2013)
переносной обнаружитель опасных скрытых веществ -  патент 2476864 (27.02.2013)
генератор меченых нейтронов -  патент 2467317 (20.11.2012)
способ оценки загрязнения атмосферного воздуха тяжелыми металлами и другими химическими элементами с помощью эпифитных мхов -  патент 2463584 (10.10.2012)
Наверх