порошковая проволока для наплавки деталей
Классы МПК: | B23K35/368 выбор неметаллических составов материалов электродного стержня, в том числе совместно с выбором материалов для пайки или сварки |
Автор(ы): | Фомин Александр Геннадьевич (RU), Шарапов Михаил Григорьевич (RU), Беляев Николай Васильевич (RU), Левченко Алексей Михайлович (RU) |
Патентообладатель(и): | Автономная некоммерческая организация "Региональный северо-западный межотраслевой аттестационный центр" (АНО "РСЗ МАЦ") (RU) |
Приоритеты: |
подача заявки:
2007-02-26 публикация патента:
27.11.2008 |
Изобретение может быть использовано для наплавки на детали из конструкционных сталей, работающие в условиях абразивного или гидроабразивного изнашивания, в том числе, при наличии умеренных ударных нагрузок, например детали бурового и горнорудного оборудования, дорожно-строительных машин и т.п. Порошковая проволока включает оболочку из малоуглеродистой стали и наполнитель в виде порошка при следующем содержании компонентов, мас.%: карбид вольфрама 50-60, карбид титана 2-4, кобальт 4-6, хром 4-6, ферробор 8-12, никель 2-5, кремнефтористый натрий 2-4, стальная оболочка - остальное. Порошковая проволока обеспечивает повышенную твердость и износостойкость наплавленных покрытий, что позволяет повысить ресурс работы деталей, снизить эксплуатационные расходы, связанные с остановкой оборудования для замены вышедших из строя деталей. 1 табл.
Формула изобретения
Порошковая проволока для наплавки деталей, состоящая из оболочки из малоуглеродистой стали и наполнителя в виде порошка, содержащего металлокерамические сплавы на основе карбидов вольфрама и титана, кобальт и кремнефтористый натрий, отличающаяся тем, что наполнитель дополнительно содержит хром, ферробор и никель при следующем соотношении составляющих компонентов проволоки, мас.%:
Карбид вольфрама | 50-60 |
Карбид титана | 2-4 |
Кобальт | 4-6 |
Хром | 4-6 |
Ферробор | 8-12 |
Никель | 2-5 |
Кремнефтористый натрий | 2-4 |
Стальная оболочка | Остальное |
Описание изобретения к патенту
Изобретение относится к материалам для наплавки на детали из конструкционных сталей, работающие в условиях абразивного или гидроабразивного изнашивания, в том числе, при наличии умеренных ударных нагрузок.
Известна порошковая проволока [авт. свид. СССР №354961], содержащая вес.%:
Вольфрам 22-40
Кобальт 24-26
Ферротитан 2.6-2.8
Феррованадий 1-1.5
Стальная оболочка - остальное.
Однако твердость металла, наплавленного этой порошковой проволокой (50-52 HRC), не может обеспечить требуемой износостойкости деталей, работающих в условиях интенсивного абразивного или гидроабразивного изнашивания.
В большей степени отвечает предъявляемым требованиям порошковая проволока для износостойкой наплавки, выбранная за прототип [Патент РФ №2259266]. Она содержит карбиды вольфрама и титана, кобальт, а в качестве раскислителей порошок алюминия и кремнефтористый натрий при следующем соотношении компонентов, вес.%:
Карбид вольфрама 35-50
Карбид титана 1-3.5
Кобальт 2-6
Порошок алюминия 0.2-2.5
Кремнефтористый натрий 0.2-0.7
Стальная оболочка - остальное.
Недостатком этой проволоки является сравнительно низкая стабильность горения дуги, повышенное порообразование, а также не обеспечивается требуемый уровень износостойкости.
Задачей изобретения является повышение твердости и износостойкости наплавленных покрытий на деталях машин, механизмов и инструмента из конструкционных сталей при работе их в условиях абразивного или гидроабразивного изнашивания и умеренных ударных нагрузок при отсутствии в наплавленном металле трещин, скоплений пор и других недопустимых дефектов.
Предложена порошковая проволока для наплавки деталей, состоящая из оболочки из малоуглеродистой стали и наполнителя в виде металлокерамических сплавов на основе карбидов вольфрама и титана, содержащего также кобальт и кремнефтористый натрий. Наполнитель дополнительно содержит порошки хрома, ферробора и никеля при следующем соотношении компонентов, мас.%:
Карбид вольфрама 50-60
Карбидтитана 2-4
Кобальт 4-6
Хром 4-6
Ферробор 8-12
Никель 2-5
Кремнефтористый натрий 2-4
Стальная оболочка - остальное.
Легирующими компонентами в порошковой проволоке, обеспечивающей высокую твердость и износостойкость наплавленного металла, являются карбиды вольфрама и титана, хром и ферробор. Хром и ферробор, соединяясь с углеродом из расплавившихся частиц порошка карбидов вольфрама, а также с углеродом из расплавленного металла изделия и стальной оболочки порошковой проволоки, образуют карбиды хрома, карбобориды, а также бориды вольфрама и хрома, что дополнительно повышает твердость матричного сплава и обеспечивает высокий уровень износостойкости металла, наплавленного этим составом. При наплавке часть порошка карбидов вольфрама и титана переходит в расплав с последующим образованием вторичных, в том числе сложных карбидов типа (Fe, W)C, a часть остается в наплавленном металле в виде нерасплавившихся армирующих его частиц, которые благодаря своей высокой твердости (88-91 HRA) обеспечивают повышенную износостойкость наплавленного покрытия. Никель повышает пластичность сплава и предотвращает выкрашивание твердых частиц карбида вольфрама.
Кобальт в нерасплавленных частицах порошка обеспечивает их высокую термоциклическую прочность, препятствуя образованию микротрещин и способствуя образованию аустенитной составляющей в структуре наплавленного металла, обеспечивает повышенную стойкость его против ударных нагрузок. Для снижения склонности к образованию пор, повышения стабильности горения дуги, обеспечения высокого качества наплавленного металла в состав шихты именно в указанном количестве введен кремнефтористый натрий. Благодаря наличию в наплавленном металле большого количества упрочняющей твердой фазы из карбидов, карбоборидов и боридов, а также нерасплавленных частиц порошка из твердого металлокерамического сплава на основе карбидов вольфрама последние армируют матричный сплав и служат барьером на пути абразивных частиц. Стойкость наплавленных покрытий против ударных нагрузок обеспечивается наличием в матричном сплаве аустенитной составляющей. Оптимальная толщина наплавленного порошковой проволокой высокоизносостойкого покрытия составляет 2-4 мм. За счет перемешивания расплавленного основного металла детали и частиц порошка из карбидовольфрамового сплава, обладающих высокой плотностью, количество легирующих элементов в нижних слоях наплавленного металла не ниже, чем в верхних слоях. По этой причине твердость и износостойкость наплавленного покрытия по мере его изнашивания не снижается. Таким образом, существенными признаками, характеризующими изобретение, являются определенное соотношение компонентов и дополнительное содержание хрома, ферробора и никеля.
Оптимальное соотношение компонентов было установлено экспериментально. Содержание карбидов вольфрама и титана принято 50-60 мас.% и 2-4 мас.% соответственно, что обеспечивает наиболее высокие показатели твердости и износостойкости наплавленных покрытий. Содержание хрома и ферробора принято 4-6 мас.% и 8-12 мас.% соответственно, что увеличивает содержание в матричном сплаве упрочняющих частиц в виде карбидов, карбоборидов и боридов, дополнительно повышая твердость и износостойкость наплавленных покрытий. Содержание кобальта принято 4-6 мас.%, что обеспечивает высокую термоциклическую прочность твердых частиц в наплавленном металле. Содержание никеля в порошковой проволоке принято в пределах 2-5 мас.%, что достаточно для обеспечения стойкости наплавленных покрытий против умеренных ударных нагрузок. Содержание в порошковой проволоке кремнефтористого натрия установлено в пределах 2-4 мас.%. Более низкое содержание этого компонента не обеспечивает защиты металла, вызывая появление пористости и шлаковых включений в наплавленном металле и снижая его износостойкость, в том числе за счет уменьшения устойчивости дугового процесса.
Экспериментальное опробование предложенного состава порошковой проволоки проводилось при использовании следующих исходных компонентов:
- порошка, полученного размолом пластинок из твердых сплавов ВК6 и Т5К10 (ГОСТ 3882-74). Размол выполняли в шаровой мельнице до частиц размером 315-800 мкм,
- порошка металлического хрома марки X1 по ГОСТ 5905,
- порошка ферробора марки ФБ-1 по ГОСТ 14848,
- порошка никеля марки НП-1 по ГОСТ 9722.
- порошка кремнефтористого натрия по ТУ-6-09-1461,
- стальной ленты для изготовления оболочки порошковой проволоки из стали марки Ст08кп толщиной 0.6 мм по ГОСТ 503-81.
Изготовленная порошковая проволока диаметром 4.2 мм имела коэффициент заполнения 60-70%. Под наплавку использовали пластины из стали Ст3сп размерами 15×100×200 мм. Наплавку выполняли предлагаемой порошковой проволокой аргонодуговым способом неплавящимся электродом на токе 120-130А с перекрытием каждого предыдущего наплавленного валика следующим до 50% его ширины. Толщина наплавленного покрытия составила 3.0-3.5 мм.
Состав порошковых проволок и свойства наплавленного металла
Таблица | ||||
Характерные признаки порошковых проволок | Предлагаемый состав, мас.% | Прототип, мас.% | ||
1 | 2 | 3 | ||
Содержание карбидов вольфрама | 50 | 55 | 60 | 46 |
Содержание карбидов титана | 2 | 3 | 4 | 2 |
Содержание кобальта | 4 | 5 | 6 | 4 |
Содержание хрома | 4 | 5 | 6 | - |
Содержание ферробора | 8 | 10 | 12 | - |
Содержание порошка никеля | 2 | 3,5 | 5 | - |
Содержание порошка алюминия | - | - | - | 1.5 |
Содержание кремнефтористого натрия | 2 | 3 | 4 | 0.5 |
Стальная оболочка проволоки | Ост | Ост | Ост | Ост |
Твердость наплавленного металла, HRC | 65 | 66 | 67 | 62 |
Относительная износостойкость наплавленного металла, | 8.8 | 10.7 | 11.5 | 7.2 |
(эталон Ст45) |
Приведенные в таблице данные подтверждают правильность технического решения и выбранных интервалов по составу порошковой проволоки.
Порошковая проволока для наплавки деталей обладает повышенной твердостью и износостойкостью наплавленных покрытий. Экономический эффект выразится прежде всего в повышении в 1.5-1.8 раза ресурса работы деталей, подвергающихся в процессе эксплуатации интенсивному изнашиванию при наличии умеренных ударных нагрузок (детали бурового и горнорудного оборудования, детали дорожно-строительных машин, оборудование доменных печей, детали мельниц и дробилок, оборудование для производства цемента, асфальтобетонной смеси и др.) Наряду с этим снижаются эксплуатационные расходы, связанные с остановкой оборудования и заменой вышедших из строя деталей на новые.
Класс B23K35/368 выбор неметаллических составов материалов электродного стержня, в том числе совместно с выбором материалов для пайки или сварки