электропроводящий композиционный материал, шихта для его получения и электропроводящая композиция
Классы МПК: | H01C7/00 Нерегулируемые резисторы, имеющие один или несколько слоев или покрытий; нерегулируемые резисторы из порошкообразного токопроводящего или порошкообразного полупроводникового материала с диэлектриком или без него |
Автор(ы): | Лепакова Ольга Клавдиевна (RU), Голобоков Николай Николаевич (RU), Китлер Владимир Давыдович (RU), Шульпеков Александр Михайлович (RU), Максимов Юрий Михайлович (RU) |
Патентообладатель(и): | ТОМСКИЙ НАУЧНЫЙ ЦЕНТР СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК (ТНЦ СО РАН) (RU) |
Приоритеты: |
подача заявки:
2007-10-31 публикация патента:
20.12.2008 |
Изобретение относится к электротехнической промышленности и может быть использовано для изготовления электропроводящих покрытий резистивных нагревательных элементов. Электропроводящий композиционный материал содержит, мас.%: карбосилицид титана Ti3SiC2 - 89-93, карбид титана TiC - 4-6 и фазу на основе железа - остальное. Для получения заявляемого электропроводящего композиционного материала используют шихту, содержащую, мас.%: ферросилиций 17-21, титан 67-70 и углерод 12-13. Электропроводящая композиция содержит заявляемый электропроводящий композиционный материал 30-80 мас.% и связующее, в качестве которого используют кремнийорганическое соединение в количестве 20-70 мас.%. Техническим результатом изобретения является снижение стоимости материала и композиции в целом в связи с использованием дешевого ферросилиция либо отходов ферросплавного производства, а также и то, что покрытия на основе карбосилицида титана обладают более высокой температурной стабильностью. 3 н.п. ф-лы, 1 ил.
Формула изобретения
1. Электропроводящий композиционный материал, содержащий карбид титана, отличающийся тем, что он дополнительно содержит карбосилицид титана Ti3SiC2 и фазу на основе железа при следующих количествах компонентов, мас.%:
Ti3SiC 2 | 89-93 |
TiC | 4-6 |
фаза на основе Fe | остальное |
2. Шихта для получения электропроводящего композиционного материала, содержащая титан и углерод, отличающаяся тем, что она дополнительно содержит ферросилиций при следующем соотношении компонентов, мас.%:
ферросилиций | 17-21 |
титан | 67-70 |
углерод | 12-13 |
3. Электропроводящая композиция, содержащая электропроводящий материал и связующее, отличающаяся тем, что в качестве электропроводящего материала она содержит материал по п.1, в качестве связующего - кремнийорганическое соединение при следующем соотношении компонентов, мас.%:
электропроводящий композиционный | |
материал на основе Ti 3SiC2 | 30-80 |
кремнийорганическое соединение | 20-70 |
Описание изобретения к патенту
Изобретение относится к электротехнической промышленности и может быть использовано при изготовлении электропроводящих покрытий резистивных нагревательных элементов.
Известна электропроводящая резистивная композиция содержащая распределенные в полимерном связующем частицы электропроводящего вещества, электроизолирующее вещество и вещество, регулирующее температурный коэффициент сопротивления. В качестве электропроводящего вещества используют смесь пиролитического графита и никеля (25 и 75 мас.% соответственно), в качестве полимерного связующего и электроизолирующего вещества используют термостойкие полимеры (фторопласты, полиимиды, полиамиды, полиорганосилоксаны) (патент РФ №2240616, МПК Н01С 7/00, 2004).
Недостатком известного материала является сложный состав композиции, необходимость использования мелкодисперсных порошков. Кроме того, использование в качестве одного из электропроводящих компонентов - никеля (до 75 мас.%) повышает стоимость композиции в целом.
Известна также электропроводящая композиция для резистивного нагревательного элемента, содержащая распределенные в полимерном связующем частицы электропроводящего вещества, состоящего из силицида хрома, силицида марганца, силицида железа, нитрида хрома или их смеси, и частицы электроизолирующего вещества. В качестве полимерного связующего использованы полиуретаны, полиимиды, полиамиды органосилоксаны, термопластичные полимеры (патент РФ №2082239, МПК Н01С 7/00, 1997).
Недостатком данной электропроводящей композиции является то, что она представляет собой механическую смесь компонентов. Важным обстоятельством во всех случаях приготовления указанной композиции является обеспечение равномерного распределения в полимерном связующем частиц электропроводящего и электроизолирующего веществ, для чего необходимо соблюдать зерновой состав смешиваемых компонентов с учетом их плотностей.
Наиболее близкими к заявляемому изобретению являются шихта, электропроводящий материал и электропроводящая полимерная композиция (патент РФ №2280657, МПК C08L 79/08, 2006).
Шихта для получения карбида титана, использованного в качестве проводящего компонента электропроводящего материала, состоит из порошкообразного губчатого титана марки ПТМ и сажи ПМ-50. Нестехиометрический карбид титана получают в режиме самораспространяющегося высокотемпературного синтеза (СВС). Для осуществления СВС порошок титана с сажей смешивают в мольном соотношении 1:n, где 0 n 1, в шаровой мельнице в течение 0,5-1,0 часа. Из полученной смеси прессуют таблетки диаметром 1-2 см и высотой 3-5 см, которые затем сжигают в токе аргона. Полученные материалы измельчают в шаровой мельнице и отбирают фракцию с диаметром частиц меньше 100 мкм.
Электропроводящий полимерный материал получают следующим образом: сначала отдельно смешивают 2/3 полимерного связующего с углеродным наполнителем и оставшуюся 1/3 часть полимерного связующего с карбидом титана. В качестве полимерного связующего используют полиамидное связующее ПАИС-104. Затем проводят горячее прессование и отверждение первой смеси, которую подвергают измельчению, и после измельчения смешивают со второй смесью и проводят окончательное отверждение материала.
Недостатками композиции являются трудоемкость изготовления, необходимость использования специального оборудования. При приготовлении электропроводящей композиции из компонентов, имеющих разную плотность, необходимо обеспечить их равномерное распределение. Кроме того, использованное в изобретении полимерное связующее имеет недостаточно высокую теплостойкость (не более 200-250°С). Нестехиометрический карбид титана имеет большую склонность к окислению при температуре эксплуатации композиции. Это приводит к тому, что при температурах выше 250°С электрическое сопротивление покрытий, содержащих карбид титана, резко возрастает.
Задачей изобретения является получение нового электропроводящего композиционного материала с высокой стабильностью электрического сопротивления при одновременном снижении стоимости материала.
Задача изобретения решается следующим образом. Методом СВС синтезируют электропроводящий композиционный материал на основе карбосилицида титана Ti 3SiC2 следующего состава, мас.%:
Ti3SiC2 | 89-93 |
TiC | 4-6 |
фаза на основе железа | остальное. |
Причем состав электропроводящего композиционного материала задается составом шихты, состоящей из порошков промышленного ферросилиция (марки ФС-75), титана (ПТС) и углерода (сажа марки ПМ-15), взятых в следующих количествах, мас.%:
ФС-75 | 17-21 |
Ti | 67-70 |
С | 12-13. |
Предельные составы шихты установлены экспериментально и обусловлены максимальным содержанием в синтезированном продукте карбосилицида титана. Основным параметром, определяющим состав электропроводящего композиционного материала на основе Ti3SiC 2, является содержание в шихте ферросилиция ФС-75, а отношение количества титана к углероду поддерживается постоянным и составляет Ti:C 5.5. При содержании в шихте ферросилиция ФС-75 менее 17 мас.% в процессе синтеза формируется композит на основе карбида титана, и электропроводящая композиция в целом характеризуется более низкой температурной стабильностью электрического сопротивления по сравнению с заявляемым составом. При содержании в шихте ферросилиция ФС-75 более 21 мас.% синтезируется композит, который в своем составе дополнительно содержит карбид кремния, что приводит к ухудшению технологических показателей электропроводящей композиции в целом. Продукт, сформировавшийся в процессе синтеза, состоит из равномерно распределенных в объеме материала следующих структурных составляющих: карбосилицида титана (Ti3 SiC2), составляющего основу материала, карбида титана (TiC) и фазы на основе железа. Таким образом, отпадает необходимость в тщательном перемешивании отдельных компонентов с целью их равномерного распределения между собой, а также в полимерном связующем. Поскольку основной фазой в заявленном материале является карбосилицид титана Ti3SiC 2, а на долю карбида титана приходится не более 10 мас.%, то, как показали исследования, покрытия на основе Ti 3SiC2 обладают более высокой температурной стабильностью электрического сопротивления по сравнению с покрытиями на основе карбида титана.
Важно, что для синтеза материала используют дешевый, по сравнению с чистыми элементами, промышленный ферросилиций или отходы ферросплавного производства.
Далее полученный композиционный материал на основе Ti 3SiC2 смешивают с 40%-ным раствором кремнийорганического полимерного связующего в количестве 30-70 мас.%. Полученную суспензию с помощью кисти, валика или краскопульта наносят на подложки с нанесенными металлическими электродами, высушивают на воздухе при комнатной температуре и обжигают при температуре 250-350°С. Измерения электрического сопротивления покрытий проводят с помощью омметра Ф-400. Для приготовления суспензии и получения электропроводящего покрытия используют широко распространенное оборудование, применяемое для лакокрасочных работ. Используемые в изобретении кремнийорганические полимерные связующие характеризуются боле высокой теплостойкостью по сравнению с полиамидным полимерным связующим прототипа.
При увеличении количества полимерного связующего более 70 мас.% покрытие имеет недостаточно высокую электропроводность для его использования в качестве резистивного слоя нагревательных элементов.
Уменьшение содержания полимерного связующего (менее 20 мас.%) не приводит к уменьшению сопротивления, но при этом ухудшаются адгезия, однородность и механическая прочность покрытия.
Следующие примеры поясняют сущность изобретения.
Пример 1. Порошки ферросилиция марки ФС-75 дисперсностью 50-100 мкм, титана (ПТС) дисперсностью менее 100 мкм и углерода (сажа марки ПМ- 15), взятые в количестве, мас.%: ФС - 75-17, Ti - 70, С - 13, тщательно перемешивают, прессуют в форме цилиндров при небольшом давлении 5-10 атм, помещают в реактор и осуществляют поджиг реакционной смеси с помощью спирали из вольфрамовой проволоки. Синтез проводят в режиме горения в инертной атмосфере (аргоне при давлении 4-10 атм). После остывания продукт извлекают из реактора. Согласно рентгенофазовому и микроструктурному анализам СВС-продукт представляет собой композиционный материал, состоящий из карбосилицида титана Ti3SiC2 (89 мас.%), карбида титана TiC (6 мас.%) и фазы на основе железа (5 мас.%). Согласно микроструктурному анализу продукт представляет композит, основу которого составляет карбосилицид титана, а TiC и фаза на основе железа равномерно распределены в объеме материала. Таким образом, в процессе синтеза сформировался готовый композит с равномерным распределением структурных составляющих. Продукт, благодаря тому что основу его составляет карбосилицид титана, легко измельчается до дисперсности менее 50 мкм. Полученный порошок смешивают с 40%-ным раствором полимерного связующего в соотношении 30 мас.% полимерного связующего (в пересчете на сухой остаток) и 70 мас.% композита на основе Ti3SiC 2. Полученную суспензию с помощью кисти, валика или краскопульта наносят на подложки с нанесенными металлическими электродами, высушивают на воздухе при комнатной температуре и обжигают при температуре 350°С и далее проводят измерения электрического сопротивления. Электрическое сопротивление образцов измеряют с помощью омметра Ф-400. Электрическое сопротивление данной композиции составляет 30 Ом/ (термообработка 350°С).
Пример 2. Готовят шихту следующего состава, мас.%: ФС - 75-21, Ti - 67, С - 12. Синтез проводят так же, как и в примере 1. В результате синтеза получают продукт следующего состава: Ti3 SiC2 (93 мас.%), TiC (4 мас.%), фаза на основе железа (3 мас.%). Продукт легко измельчается до дисперсности менее 50 мкм. Полученный порошок смешивают с 40%-ным раствором полимерного связующего в соотношении 30 мас.% полимерного связующего (в пересчете на сухой остаток) и 70 мас.% композита на основе Ti3SiC2. Полученную суспензию с помощью кисти, валика или краскопульта наносят на подложки с нанесенными металлическими электродами, высушивают на воздухе при комнатной температуре и обжигают при температуре 350°С и далее проводят измерения электрического сопротивления. Электрическое сопротивление данной композиции составляет 20 Ом/ (термообработка 350°C).
Таким образом, применение композиционного материала на основе Ti 3SiC2 и полимерного связующего (в указанных в изобретении пределах) позволяет получить материал с электропроводностью, меняющейся в широких пределах (20-5000 Ом/ ). Электропроводящая полимерная композиция характеризуется высокой температурной стабильностью по сравнению с прототипом (материал на основе TiC) (см. чертеж). Кроме того, для синтеза композита на основе Ti3SiC 2 используют дешевое сырье (промышленный ферросилиций, отходы ферросплавного производства).
Класс H01C7/00 Нерегулируемые резисторы, имеющие один или несколько слоев или покрытий; нерегулируемые резисторы из порошкообразного токопроводящего или порошкообразного полупроводникового материала с диэлектриком или без него
разрядник для защиты от перенапряжений - патент 2529647 (27.09.2014) | |
устройство птк - патент 2518219 (10.06.2014) | |
устройство с разрядником защиты от перенапряжений - патент 2510090 (20.03.2014) | |
устройство защиты от перенапряжений - патент 2497250 (27.10.2013) | |
устройство для ограничения перенапряжения - патент 2493626 (20.09.2013) | |
изоляторная система - патент 2483378 (27.05.2013) | |
пленочный планарный вариконд - патент 2479879 (20.04.2013) | |
способ изготовления оксидно-цинковых варисторов - патент 2474901 (10.02.2013) | |
разрядник для защиты от перенапряжений - патент 2452053 (27.05.2012) | |
ограничитель перенапряжения - патент 2427049 (20.08.2011) |