состав для поверхностного лазерного упрочнения деталей из конструкционных сталей

Классы МПК:C23C12/00 Диффузия в твердом состоянии по крайней мере одного неметаллического элемента, иного, чем кремний, и по крайней мере одного металлического элемента или кремния в поверхность металлического материала
B23K26/00 Обработка металла лазерным лучом, например сварка, резка, образование отверстий
Автор(ы):, ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования "Брянский государственный технический университет" (RU)
Приоритеты:
подача заявки:
2007-07-12
публикация патента:

Изобретение относится к области химико-термической обработки стальных деталей, в частности к составу для поверхностного лазерного упрочнения, и может быть использовано для упрочнения деталей машин и инструментов, изготовленных из конструкционных сталей и работающих в условиях многократного контактного (статического и динамического) нагружения в машиностроительной, металлообрабатывающей и других отраслях промышленности. Состав содержит углерод, окись хрома и борный ангидрид при следующем соотношении компонентов, мас.%: углерод 8...16; окись хрома 25...35; борный ангидрид - остальное. В результате использования данного состава при упрочнении деталей повышается их износостойкость. 1 табл.

Формула изобретения

Состав для поверхностного лазерного упрочнения деталей из конструкционных сталей, содержащий хром- и борсодержащие компоненты, отличающийся тем, что он дополнительно содержит углерод, а в качестве хром- и борсодержащих компонентов - окись хрома и борный ангидрид, при следующем соотношении компонентов, мас.%:

углерод8-16
окись хрома25-35
борный ангидридОстальное

Описание изобретения к патенту

Изобретение относится к области химико-термической обработки стальных деталей, в частности к лазерному легированию, и может быть использовано для поверхностного упрочнения деталей машин и инструментов, изготовленных из конструкционных сталей и работающих в условиях многократного контактного (статического и динамического) нагружения в машиностроительной, металлообрабатывающей и других отраслях промышленности.

Известен состав [1] для лазерного легирования стальных деталей, состоящий из окиси хрома (Cr 2О3), карбида бора (В 4С) и ферросилиция (FeSi), обеспечивающий высокую степень упрочнения обработанной поверхности за счет повышения поверхностной микротвердости и глубины модифицированного слоя. Недостатком этого состава является неравномерность изменения микротвердости упрочненного слоя по глубине и неоднородность его по площади обработанной поверхности, что приводит к невысоким показателям износостойкости упрочненной поверхности в условиях многократных контактных нагрузок.

Целью изобретения является повышение износостойкости функциональных поверхностей изделий из конструкционных сталей в условиях многоциклового контактного нагружения.

В связи с этим предлагается состав для поверхностного лазерного упрочнения деталей из конструкционных сталей, включающий углерод (С), окись хрома (Cr2O3 ), а в качестве борсодержащего вещества - борный ангидрид (В 2О3), при следующем соотношении компонентов, мас.%:

углерод8...16;
окись хрома25...35;
борный ангидрид- остальное

Компоненты в составе выполняют следующие функции.

Борный ангидрид (В2 О3) является основным упрочняющим компонентом и представляет собой порошок белого цвета с температурой плавления 450...470°С. В условиях лазерной обработки борный ангидрид взаимодействует с железом и хромом (из матрицы основы и окиси, входящей в заявляемый состав) с образованием соответствующих боридов, обладающих высокой объемной прочностью и твердостью.

Окись хрома (Cr2О3 ) представляет собой мелкодисперсный (состав для поверхностного лазерного упрочнения деталей из конструкционных   сталей, патент № 2345174 >20 мкм) порошок зеленого цвета, имеющий температуру плавления 2300°С, кристаллизующийся в гексагональной решетке. Взаимодействуя при высоких температурах с бором, хром образует прочные и твердые бориды, которые в то же время значительно повышают трещиностойкость. Содержание окиси хрома менее 25% приводит к интенсивному трещинообразованию в процессе динамического нагружения упрочненных поверхностей, что объясняется большой долей образовывающихся весьма хрупких боридов железа. Содержание окиси хрома более 35% приводит к значительному снижению степени упрочнения ввиду существенного уменьшения концентрации борного ангидрида.

Углерод (С) вводится в состав обмазки в виде мелкодисперсной фракции (состав для поверхностного лазерного упрочнения деталей из конструкционных   сталей, патент № 2345174 >20 мкм) порошка черного цвета (графита) с целью повышения твердости и прочности получаемого покрытия за счет образования карбидов хрома, а также для стабилизации глубины упрочнения по всей площади обрабатываемой поверхности, что достигается повышением поглощающей способности обмазки и, как следствие, более равномерным распределением энергии по пятну лазерного воздействия в процессе упрочнения. Содержание углерода менее 8% не сказывается на эффективности упрочнения, что объясняется недостаточной его концентрацией для интенсификации процессов образования карбидов хрома. Содержание углерода свыше 16% приводит к интенсивному выгоранию состава обмазки при воздействии лазерного излучения.

Указанные свойства компонентов, вводимых в состав обмазки в предлагаемом соотношении, обеспечивают получение при лазерной обработке на поверхности конструкционной стали упрочненного слоя с высокой износостойкостью в условиях многократных динамических нагрузок.

Для экспериментальной проверки предлагаемого состава подготавливались 6 смесей ингредиентов, три из которых показали оптимальные результаты. В качестве объектов исследований использовались призмы опорные технологической оснастки (7033-0035 по ГОСТ 12195-66, сталь 45 (HRCэ 50...55)), рабочие поверхности которых предварительно обрабатывались до Ra=2,5 мкм. Компоненты составов смешивались, разбавлялись связующим веществом и наносились пневмораспылением на рабочие поверхности призм. Толщина наносимой обмазки составляла 100...120 мкм.

Модифицирование проводили на технологической лазерной установке «Квант-18М», работающей в импульсном режиме, при плотности излучения q=7 Дж/мм2, длительности импульса состав для поверхностного лазерного упрочнения деталей из конструкционных   сталей, патент № 2345174 =8 мс, коэффициенте перекрытия пятна лазерного излучения - 0,5.

Поверхностная микротвердость определялась на микротвердомере ПМТ-3У при нагрузке 0,5 Н. Для выявления глубины упрочнения изготавливались шлифы обработанных образцов, осуществлялось их травление (5...10 с) в 5%-ном растворе азотной кислоты. Глубина упрочнения определялась шириной «белого» нетравящегося слоя.

Для определения износостойкости упрочненных поверхностей использовалась специальная установка многоциклового контактного нагружения: нормально к упрочненной поверхности циклически через цилиндрический образец (состав для поверхностного лазерного упрочнения деталей из конструкционных   сталей, патент № 2345174 20 мм, Ra=6,3 мкм) прикладывалась нагрузка 2500 Н. После заданного числа циклов нагружения абсолютный износ (в направлении, нормальном исследуемой поверхности) определялся по профилограммам на автоматизированном измерительном комплексе на базе профилографа-профилометра модели 170311 (завод «Калибр»). Измерения проводились трехкратно.

Результаты исследований приведены в таблице.

Содержание углерода менее 8% (таблица, вар.2) слабо влияет на эффект упрочнения, так как его концентрация в зоне лазерного воздействия не достаточна для активизации процессов образования карбидов хрома, а увеличение содержания углерода свыше 16% приводит к интенсивному выгоранию обмазки и, как следствие, к крайне неравномерному изменению глубины упрочненного слоя - от 120 до 200 мкм (таблица, вар.6).

Таблица

Результаты упрочнения стальных образцов
№ п/п Компоненты Содержание в обмазке, масс.%Свойства упрочненного слоя
Микротвердость, HVМаксимальная глубина упрочнения, мкмВеличина износа (мкм) при числе циклов нагружения
10000 3000050000
1.Окись хрома 25 2000 280 716 37
Ферросилиций 10
Карбид бора (известный) 65
2. Борный ангидрид 76 1800 1808 (15)**(34)**
Окись хрома20
Углерод4
3.Борный ангидрид 67 1850 2306 1529
Окись хрома25
Углерод8
4.Борный ангидрид 58 2010 2505 1227
Окись хрома30
Углерод12
5.Борный ангидрид 49 1950 2406 1230
Окись хрома35
Углерод16
6.Борный ангидрид 40 1650 200*8 2038
Окись хрома40
Углерод20
Примечания: * - изменение глубины легирования неоднородно, в пределах обработанной поверхности;
** - наличие трещин в зоне контакта «упрочненная поверхность - индентор».

Увеличение содержания окиси хрома свыше 35% приводит к преобладанию процесса хромирования, что несколько снижает поверхностную твердость (таблица, вар.6). Уменьшение содержания окиси хрома ниже 25% сопровождается интенсификацией процесса борирования с образованием прочных, но хрупких боридов железа, что является причиной появления сетки трещин при многоцикловом нагружении (таблица, вар.2).

Приведенные в таблице данные показывают, что использование предлагаемого состава позволяет при сохранении степени упрочнения поверхностного слоя повысить износостойкость образцов из конструкционных сталей на 30...35%, что обеспечивает увеличение срока эксплуатации деталей в условиях действия многоцикловых контактных нагрузок.

Источники информации

1. А.с. 1607433 СССР, МКИ С23С 12/02. Состав для борохромирования стальных деталей при лазерном нагреве.

Класс C23C12/00 Диффузия в твердом состоянии по крайней мере одного неметаллического элемента, иного, чем кремний, и по крайней мере одного металлического элемента или кремния в поверхность металлического материала

способ нанесения металлокерамического покрытия на стальную деталь с использованием электрической дуги косвенного действия -  патент 2510427 (27.03.2014)
способ нанесения защитного покрытия на изделия из стали или титана -  патент 2492281 (10.09.2013)
способ нанесения керамического покрытия на детали из чугунов и сталей -  патент 2482215 (20.05.2013)
способ нанесения покрытия для защиты от высокотемпературного окисления поверхности внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных сплавов на основе никеля -  патент 2471887 (10.01.2013)
способ нанесения шликера металлокерамического покрытия на внутреннюю поверхность статора турбины -  патент 2433208 (10.11.2011)
способ нанесения покрытия -  патент 2413785 (10.03.2011)
способ борохромирования стальных изделий -  патент 2391441 (10.06.2010)
способ боросилицирования стальных изделий -  патент 2391440 (10.06.2010)
способ борохромирования стальных изделий -  патент 2391439 (10.06.2010)
способ термодиффузионного упрочнения стальных деталей -  патент 2384649 (20.03.2010)

Класс B23K26/00 Обработка металла лазерным лучом, например сварка, резка, образование отверстий

способ и устройство для контроля проводимого на обрабатываемой детали процесса лазерной обработки, а также лазерная обрабатывающая головка с подобным устройством -  патент 2529136 (27.09.2014)
способ и устройство для контроля проводимого на обрабатываемой детали процесса лазерной обработки, а также лазерная обрабатывающая головка с подобным устройством -  патент 2529135 (27.09.2014)
способ лазерной резки хрупких неметаллических материалов и устройство для его осуществления -  патент 2528287 (10.09.2014)
способ управления лазерной обработкой скальной породы переменной крепости и система для его осуществления -  патент 2528187 (10.09.2014)
способ лазерно-плазменного наноструктурирования металлической поверхности -  патент 2526105 (20.08.2014)
система для термической обработки изделий, содержащая плазменную и/или лазерную обрабатывающую головку, которые могут быть присоединены с использованием одного хвостовика -  патент 2525016 (10.08.2014)
способ ивзлечения капсюлей из гильз стрелковых патронов и устройство для его осуществления -  патент 2524333 (27.07.2014)
способ сварки труб большого диаметра лазерной сваркой -  патент 2523406 (20.07.2014)
способ лазерного плавления с использованием абляционного покрытия -  патент 2520252 (20.06.2014)
устройство для лазерной подгонки резисторов -  патент 2519689 (20.06.2014)
Наверх