способ монтажа кремниевых кристаллов на покрытую золотом поверхность

Классы МПК:H01L21/52 монтаж полупроводниковой подложки в корпусе
Автор(ы):, , ,
Патентообладатель(и):Федеральное государственное унитарное предприятие "Научно-исследовательский институт электронной техники" (RU)
Приоритеты:
подача заявки:
2007-05-28
публикация патента:

Изобретение относится к области полупроводниковой микроэлектроники и предназначено для присоединения полупроводникового кристалла к корпусу методом контактно-реактивной пайки с образованием эвтектического сплава Au-Si при производстве транзисторов и интегральных микросхем. Сущность изобретения: в способе монтажа кремниевых кристаллов полупроводниковых приборов на покрытую золотом поверхность корпуса с нанесенным на обратную сторону кристалла слоем, в качестве слоя на обратную сторону кристалла наносят тонкий слой аморфного кремния толщиной 15-60 нм. Изобретение направлено на повышение теплофизических свойств СВЧ-транзисторов большой мощности. 1 табл.

Формула изобретения

Способ монтажа кремниевых кристаллов полупроводниковых приборов на покрытую золотом поверхность корпуса с нанесенным на обратную сторону кристалла слоем, отличающийся тем, что в качестве слоя на обратную сторону кристалла наносят тонкий слой аморфного кремния толщиной 15-60 нм.

Описание изобретения к патенту

Предлагаемое изобретение относится к области полупроводниковой микроэлектроники и предназначено для присоединения полупроводникового кристалла к корпусу методом контактно-реактивной пайки с образованием эвтектического сплава Au-Si при производстве транзисторов и интегральных микросхем. Особенно актуальным предлагаемый способ монтажа представляется в производстве СВЧ-транзисторов большой мощности, где реализация требований равномерного отвода тепла от кристалла на металлокерамический держатель (теплоотвод) является одной из первостепенных задач получения надежного изделия в эксплуатации.

Главным условием качественного монтажа кремниевых кристаллов на позолоченную поверхность корпуса является однородность и плотность паяного шва (поверхности контактирования кристалла), которые и обуславливают достижение так называемой сплошности соединения по всей поверхности раздела кристалл-корпус. И наоборот, наличие пор и пустот в паяном шве (эвтектическом слое Au-Si) приводит к увеличению теплового сопротивления кристалл-корпус и, как следствие, локальной или полной деградации транзисторной структуры.

Необходимость создания более мощной радиоэлектронной аппаратуры требует создания СВЧ-транзисторов с выходной мощностью более 600 Вт и, соответственно, применение кристаллов больших размеров. Поэтому задача совершенствования метода контактно-реактивной пайки для достижения качественного соединения становится все более актуальным и сложным техническим решением.

Известны способы монтажа кристаллов методом контактно-реактивной пайки, в которых используются прокладки из эвтектического сплава Au-Si [1] или золотой фольги [2], или комбинированной прокладки из золотой фольги с выступающей на ней в центре полоской сплава Au-Si [3].

Общим недостатком указанных способов являются отсутствие однородности и равномерности эвтектического слоя [4], а также большая трудоемкость необходимых технологических процессов, связанных с выполнением дополнительных операций изготовления прокладок, их обработки и укладки на поверхность корпуса, а также необходимости разработки и обеспечения дополнительной технологической оснастки. К тому же указанные известные способы связаны с необоснованно большим расходом драгметалла (Au).

Известны также другие технические решения монтажа на эвтектику, основанные на использовании предварительно созданной тонкой пленки золота методом вакуумного напыления на обратную сторону пластины с транзисторными структурами [4]. Данный способ также не нашел широкого практического применения из-за плохой адгезии напыленного слоя золота к поверхности кремниевого кристалла, что в последующем ведет к образованию пустот в области контактирования кристалла и корпуса при напайке и, как следствие, к уменьшению механической прочности паяного шва и росту теплового сопротивления транзистора. Для улучшения смачивания паяемой стороны кристалла на нее наносят золотое покрытие на предварительно созданный подслой никеля, которое вжигают при температуре порядка 400°С [5]. Однако и этот способ не устраняет вышеуказанных недостатков. Кроме того, к вышеперечисленным недостаткам добавляется образование интерметаллических соединений и силицидов металлов, которые не растворяются в слое эвтектики, что приводит к дополнительному увеличению теплового сопротивления и снижению надежности изделий.

Технический результат изобретения - повышение теплофизических свойств СВЧ-транзисторов, снижение теплового сопротивления более чем на 30% и, следовательно, повышение энергетических характеристик приборов и их надежности. Технический результат достигается тем, что на обратную сторону кристалла наносится тонкий слой аморфного кремния толщиной 15÷60 нм. При этом использование других каких-либо дополнительных металлических слоев или прокладок для решения проблемы сплошности контактирования и однородности паяного шва не требуется.

Нанесенный слой кремния, благодаря своей аморфной структуре, обладает высокой реактивной способностью по отношению к золоту, что ведет на начальных стадиях сплавления к интенсивному образованию эвтектического сплава Au-Si. Эвтектический слой образуется на внешней границе пленки аморфного кремния и золотого покрытия поверхности корпуса. Этот слой является как бы «затравкой» для дальнейшего активного взаимообъемного растворения монокристаллического кремния кристалла и золотого покрытия посадочной площадки корпуса. Данный процесс характеризуется равномерным фронтом вплавления, а паяный шов при этом не имеет посторонних включений.

Способ монтажа с использованием напыленного слоя аморфного кремния на обратную сторону пластины с транзисторными структурами (кристалла) имеет значительные преимущества по сравнению с ранее применяемыми методами эвтектической пайки кристаллов не только по физико-технологическим параметрам, но и благодаря своей технологической простоте, воспроизводимости и экономичности процесса.

Монтаж кремниевых кристаллов осуществляется следующим образом. Аморфный слой кремния наносится методом вакуумного напыления на установке магнетронного распыления типа 01НИ-7-006 в среде аргона с использованием кремниевой мишени, закрепленной на медном основании.

Режим нанесения:

предварительный отжиг пластин 200÷250°С
предварительный вакуум5×104 Па
давление в рабочей камере во время распыления(6÷7)×10 3 Па
давление аргона в магнетроне (6÷7)×10-1 Па
скорость нанесения кремния (0,7÷1) нм/с
толщина пленки аморфного кремния(15÷60) нм

Выбор конкретной толщины пленки аморфного кремния определяется с учетом реализации наибольшей сплошности контактирования. Так экспериментально было установлено, что при толщинах менее 15 нм не образуется надежной сплошной поверхности контактирования, а при толщинах более 60 нм возрастают переходные сопротивления, что отрицательно сказывается на энергетических и теплофизических характеристиках мощных СВЧ-транзисторов.

В таблице приведены значения теплового сопротивления мощных СВЧ-транзисторов для применения в метровом и дециметровом диапазоне волн, изготовленных с использованием традиционной технологии монтажа кристалла способом напыления пленки Au-Ni [5] и предлагаемой технологии способом напыления пленки аморфного кремния.

Таблица.
Наименование транзистораВыходная мощность

СВЧ-транзистора, Вт
Значение теплового сопротивления транзистора,°С /Вт
Монтаж кристалла с использованием пленки Au-Ni [5]Монтаж кристалла с использованием пленки аморфного кремния
КТ9174АС 3000,82 0,57
КТ9151АС 2000,950,63
КТ9182АС150 0,970,76
КТ9152АС1001,28 1,0
КТ9142АС 502,13 1,77
КТ9190А 205,164,1

Из приведенных экспериментальных данных видно, что предложенный способ монтажа кристалла с напыленной пленкой аморфного кремния позволяет для транзисторов с различным уровнем выходной мощности (20-300 Вт) более чем на 30% уменьшить тепловое сопротивление и, следовательно, повысить энергетические характеристики приборов и их надежность.

Литература

1. Пат. 5188982 США, МКИ5 H01L 21/52. Способ присоединения полупроводникового кристалла к корпусу / Huang Chin-Ching. Опубл.23.02.93.

2. Пат. 5089439 США, МКИ5 H01L 23/6. Монтаж кремниевых кристаллов с большими размерами на покрытую золотом поверхность. / Lippey Barret Опубл.18.02.92.

3. Пат. 5037778 США, МКИ5 H01L 21/603. Монтаж кристалла с использованием Au-прокладки, плакированной эвтектическим сплавом Au-Si. / Stark James, Whitcomb Michael J. Опубл. 06.08.91.

4. А.И.Мазур, В.П.Алехин, М.Х.Шоршоров. Процессы сварки и пайки в производстве полупроводниковых приборов. М.: Радио и связь, 1981. 224 с.

5. Готра З.Ю. Технология микроэлектронных устройств: Справочник. М.: Радио и связь, 1991. 528 с.

Класс H01L21/52 монтаж полупроводниковой подложки в корпусе

способ корпусирования электронных компонентов -  патент 2503086 (27.12.2013)
система монтажа полупроводникового кристалла к основанию корпуса -  патент 2480860 (27.04.2013)
способ пайки кристаллов на основе карбида кремния -  патент 2460168 (27.08.2012)
способ бессвинцовой контактно-реактивной пайки полупроводникового кристалла к корпусу -  патент 2379785 (20.01.2010)
способ бессвинцовой контактно-реактивной пайки полупроводникового кристалла к корпусу с образованием эвтектики al-zn -  патент 2375786 (10.12.2009)
способ получения контактных соединений диодных лазеров и линеек -  патент 2364985 (20.08.2009)
система монтажа полупроводникового кристалла к основанию корпуса -  патент 2336594 (20.10.2008)
способ бессвинцовой контактно-реактивной пайки полупроводникового кристалла к корпусу -  патент 2313156 (20.12.2007)
способ бессвинцовистой пайки полупроводникового кристалла к корпусу -  патент 2278444 (20.06.2006)
способ монтажа полупроводниковых кристаллов больших размеров в корпуса -  патент 2212730 (20.09.2003)
Наверх