шнекоцентробежный насос
Классы МПК: | F04D9/04 применение заливочных насосов; применение бустерных насосов для предотвращения кавитации F04D13/02 агрегаты из насосов и приводных устройств (при преобладании отличительных признаков приводных устройств см классы, к которым отнесены эти устройства) F04D29/048 магнитные; электромагнитные |
Патентообладатель(и): | Болотин Николай Борисович (RU) |
Приоритеты: |
подача заявки:
2007-10-08 публикация патента:
20.04.2009 |
Изобретение относится к насосостроению и может быть использовано преимущественно в турбонасосных агрегатах ЖРД. Шнекоцентробежный насос содержит корпус и установленные на валу шнек и крыльчатку. Между шнеком и крыльчаткой выполнена магнитная муфта, а между валом и шнеком установлены два магнитных подшипника. Шнек выполнен с втулкой, входящей в ступицу крыльчатки с возможностью осевого перемещения, и подпружинен в сторону, противоположную входу. Пружина установлена внутри ступицы крыльчатки и упирается с одной стороны в торец ступицы, а с другой во фланец шнека. Ступица крыльчатки закреплена на валу посредством фланца, в котором проделаны сквозные отверстия. Изобретение направлено на улучшение кавитационных свойств насоса. 2 з.п. ф-лы, 1 ил.
Формула изобретения
1. Шнекоцентробежный насос, содержащий корпус и установленные на валу шнек и крыльчатку, отличающийся тем, что между шнеком и крыльчаткой выполнена магнитная муфта, а между валом и шнеком установлены два магнитных подшипника, при этом шнек выполнен с втулкой, входящей в ступицу крыльчатки с возможностью осевого перемещения, и подпружинен в сторону, противоположную входу.
2. Шнекоцентробежный насос по п.1, отличающийся тем, что пружина установлена внутри ступицы крыльчатки и упирается с одной стороны в торец ступицы, а с другой - во фланец шнека.
3. Шнекоцентробежный насос по п.1 или 2, отличающийся тем, что ступица крыльчатки закреплена на валу посредством фланца, в котором проделаны сквозные отверстия.
Описание изобретения к патенту
Изобретение относится к насосостроению и может быть использовано преимущественно в турбонасосных агрегатах жидкостных ракетных двигателей ЖРД.
Известен шнекоцентробежный насос, содержащий разъемный корпус, центробежные рабочие колеса (крыльчатки), шнек, вал и опорные узлы в виде подшипников скольжения и качения (RU 2094660 С1, 27.10.1997). Однако известный насос не предназначен для системы топливопитания ЖРД.
Наиболее близким к изобретению является шнекоцентробежный насос, содержащий корпус, крыльчатку и шнек, установленные на валу (RU 2106534 С1, 10.03.1998). В известном насосе шнек повышает кавитационные свойства насоса, т.к. он обладает лучшими кавитационными свойствами, чем центробежная крыльчатка, но он механически связан с рабочим колесом насоса и имеет с ним одинаковую угловую скорость вращения. Это не позволяет эксплуатировать насос на очень больших оборотах, например 40 100 тыс. об/мин, поэтому такие насосы не применимы в ракетной технике.
Задачей изобретения является улучшение кавитационных свойств насоса.
Технический результат достигается за счет того, что в шнекоцентробежном насосе, содержащем корпус и установленные на валу шнек и крыльчатку, согласно изобретению между шнеком и крыльчаткой выполнена магнитная муфта, а между валом и шнеком установлены два магнитных подшипника, при этом шнек выполнен с втулкой, входящей в ступицу крыльчатки с возможностью осевого перемещения, и подпружинен в сторону, противоположную входу. Пружина может быть установлена внутри ступицы крыльчатки с упором с одной стороны в торец ступицы, а с другой во фланец шнека. Ступица крыльчатки может быть закреплена на валу посредством фланца, в котором проделаны сквозные отверстия.
Сущность изобретения поясняется чертежом, на котором схематично изображен шнекоцентробежный насос, продольный разрез.
Шнекоцентробежный насос содержит установленные на валу 1 крыльчатку 2 со ступицей 3, шнек 4 с втулкой 5, образующие ротор, который установлен консольно на подшипнике 6 внутри корпуса 7. Корпус 7 содержит входной патрубок 8 и выходной патрубок 9. Между крыльчаткой 2 и шнеком 4 (между их торцами) выполнена магнитная муфта 10, которая содержит ведущие магниты 11 на торце крыльчатки 2 и ведомые магниты 12 на торце шнека 4. Шнек 4 установлен на валу 1 на двух магнитных подшипниках 13. Магнитный подшипник 13 содержит магниты 14 вала 1 и магниты 15 шнека 4, обращенные друг к другу одноименными магнитными полюсами. Шнек 4 подпружинен со стороны, противоположной входу и магнитной муфте 10, пружиной 16. Внутри входного патрубка 8 выполнена полость «А». За шнеком 4 по потоку жидкости образована полость «Б». Внутри выходного патрубка выполнена полость «В».
Пружина 16 упирается одним торцом в ступицу 3, а другим во фланец 17, закрепленный на втулке 5 при помощи винтов 18. Ступица 3 крепится к силовому фланцу 19 болтами 20. Крыльчатка 2 имеет уплотнение 21. При проектировании насоса следует выполнить расчеты шнека 4 таким образом, чтобы обеспечить на расчетном режиме проскальзывание шнека 4 относительно вала 1 до 5 10%, что позволит обеспечить его окружную скорость вращения в 10 20 раз меньше, чем скорость вращения крыльчатки 2. Это значительно улучшит кавитационные свойства насоса, например, при частоте вращения вала 100000 об/мин можно получить скорость вращения шнека 4 порядка 5000 10000 об/мин, т.е. предельную по кавитационным свойствам шнека 4 скорость. При этом на одной ступени центробежного насоса будет получено максимально возможное повышение давления при минимальном весе и габаритах насоса, что имеет решающее значение для ракетных двигателей.
Регулирование работы шнека 4 происходит автоматически. При увеличении давления в полости «Б» до уровня, достаточного, чтобы на входе в крыльчатку 2 не происходила кавитация, шнек 4 под действием осевого усилия передвигается в сторону входа насоса, сжимая пружину 16. При этом зазор между ведомыми и ведущими магнитами 12, 11 магнитной муфты 10 увеличивается, магнитная связь между ними ослабевает, и частота вращения шнека 4 снижается, что благоприятно с точки зрения предотвращения кавитации на входе в шнек 4. При этом шнек 4 будет вращаться со скоростью в 5 10 раз меньшей, чем крыльчатка 2.
Применение изобретения позволяет:
1. Значительно улучшить кавитационные свойства насоса за счет уменьшения скорости вращения шнека, применения консольной схемы и размещения пружины внутри ступицы.
2. Предотвратить срыв потока перекачиваемого компонента в насосе вследствие кавитации на его входе.
3. Создать насос с минимальным весом и габаритами при большом напоре и производительности, что имеет первостепенное значение в ракетной технике.
4. Обеспечить автоматическое регулирование кавитационных свойств насоса.
Класс F04D9/04 применение заливочных насосов; применение бустерных насосов для предотвращения кавитации
Класс F04D13/02 агрегаты из насосов и приводных устройств (при преобладании отличительных признаков приводных устройств см классы, к которым отнесены эти устройства)
Класс F04D29/048 магнитные; электромагнитные
центробежный компрессорный агрегат - патент 2458253 (10.08.2012) | |
шнекоцентробежный насос - патент 2359156 (20.06.2009) | |
шнекоцентробежный насос - патент 2357101 (27.05.2009) | |
шнекоцентробежный насос - патент 2352819 (20.04.2009) |