способ производства термомеханически обработанных горячекатаных труб
Классы МПК: | C21D9/08 полых изделий или труб C21D8/10 при изготовлении полых изделий |
Автор(ы): | Вьюгина Людмила Анатольевна (RU), Рябов Игорь Евгеньевич (RU), Шулика Игорь Павлович (RU), Топоров Виктор Николаевич (RU), Лобастов Виктор Михайлович (RU), Кочуров Анатолий Васильевич (RU) |
Патентообладатель(и): | Открытое акционерное общество "Вятка" (RU) |
Приоритеты: |
подача заявки:
2007-06-15 публикация патента:
27.04.2009 |
Изобретение относится к трубопрокатному производству. Для повышения ударной вязкости трубу после окончания горячей пластической деформации охлаждают со скоростью, предотвращающей распад аустенита, до температуры, лежащей в интервале мартенситного превращения, а затем охлаждают на воздухе и проводят нагрев в индукторе, питаемом переменным током частотой 50 60 Гц, до температуры 740-760°С в течение 1-1,5 мин, выдерживают в течение 2-4 мин и окончательно охлаждают на воздухе.
Формула изобретения
Способ производства термомеханически обработанных горячекатаных труб, включающий горячую пластическую деформацию трубы, охлаждение со скоростью, предотвращающей распад аустенита, и последующее охлаждение на воздухе, отличающийся тем, что охлаждение со скоростью, предотвращающей распад аустенита, осуществляют до температуры, лежащей в интервале мартенситного превращения, а после охлаждения на воздухе трубу нагревают в индукторе, питаемом переменным током частотой 50-60 Гц, до температуры 740-760°С в течение 1-1,5 мин, выдерживают в течение 2-4 мин и окончательно охлаждают на воздухе.
Описание изобретения к патенту
Изобретение относится к термической обработке в трубопрокатном производстве.
Известен способ термомеханической обработки бесшовных труб [Авторское свидетельство СССР № 347355, Кл. C21D 9/08, 1972], являющийся, по существу, одной из разновидностей высокотемпературной термомеханической обработки (ВТМО), поскольку при его осуществлении трубы, материал которых находится в состоянии аустенита, после горячей пластической деформации подвергают контролируемому охлаждению. В самом деле, согласно изобретению данный способ включает горячую пластическую деформацию труб и охлаждение, состоящее из начального, совершаемого со скоростью, предотвращающей распад аустенита, а затем окончательного на воздухе. По мнению авторов изобретения, такое непрерывное двухстадийное охлаждение позволяет получить бейнитную структуру, обеспечивающую высокую прочность и удовлетворительную пластичность.
Однако не все стали при непрерывном ускоренном, пусть и двухстадийном, охлаждении дают устойчивое бейнитное превращение, которое гарантированно можно обеспечить только путем изотермической закалки. Так, при непрерывном ускоренном охлаждении сталей (например, высокоуглеродистых и некоторых легированных), у которых точки начала мартенситного превращения и начала бейнитного превращения близки и составляют 450 500°С, основная часть исходного аустенита превращается в мартенсит, и только небольшая часть остаточного аустенита превращается в бейнит, т.е. образуется смешанная мартенситно-бейнитная структура, обладающая при высокой прочности низкой пластичностью и вязкостью [Металловедение и термическая обработка стали: Справочник в 3-х т. под ред. Бернштейна М.Л. и Рахштадта А.Г. Т.2. - Основы термической обработки. М.: Металлургия, 1983, с.150-153].
Поставлена техническая задача: повысить ударную вязкость горячекатаной трубы.
Поставленная задача решается созданием способа производства термомеханически обработанных горячекатаных труб, включающим горячую пластическую деформацию трубы, ее охлаждение со скоростью, предотвращающей распад аустенита, и последующее охлаждение на воздухе, в котором согласно изобретению охлаждение со скоростью, предотвращающей распад аустенита, осуществляют до температуры, лежащей в интервале мартенситного превращения, а после охлаждения на воздухе трубу нагревают в индукторе, питаемом переменным током частотой 50 60 Гц, до температуры 740 760°С в течение 1 1,5 мин, выдерживают в течение 2 4 мин и окончательно охлаждают на воздухе.
Применение индукционного метода нагрева обеспечивает высокоскоростной и равномерный по объему прогрев труб и тем самым высокую производительность, а простота конструкции индукционных установок, использующих для питания сетевой ток частотой 50 60 Гц, гарантирует минимум капитальных затрат. Кроме того, применение тока частотой 50 60 Гц позволяет ограничивать температуру нагрева значениями 740 760°С. Данная температура несколько выше допустимых температур для обычного печного отпуска, поскольку она превышает критические значения, однако благодаря высокой скорости нагрева и последующей короткой выдержке превращения в материале труб запаздывают и не переходят в критическую стадию, чем и достигается эффект, аналогичный печному отпуску. В результате формируется структура сорбита отпуска, что в итоге гарантирует достаточную прочность обработанного материала при его высокой пластичности и вязкости.
Изменяя время выдержки при данной температуре, получают требуемые значения твердости и прочности. Так, сокращая время выдержки, обеспечивают повышение твердости и прочности. Наращивание же времени выдержки понижает твердость и прочность.
Известно, что скорость охлаждения, предотвращающая распад аустенита, называемая также сверхкритической скоростью, для разных сталей различна и определяется их химическим составом. В частности, для сталей мартенситного класса (например, 40Х13) данная скорость обеспечивается обычным охлаждением на воздухе, т.е. непрерывное охлаждение на воздухе оказывается также и тем двухстадийным, которое используется в предлагаемом способе, поскольку сначала при охлаждении с температуры окончания горячей пластической деформации блокируется перлитный распад аустенита, а затем, после того как температура упадет ниже точки начала мартенситного превращения, аустенит трансформируется в мартенсит. Для других же сталей сверхкритическая скорость охлаждения достигается выбором охлаждающей среды, в качестве которой можно использовать влажную (водо-воздушную), водную, масляную, эмульсионную, а также и мощную струю направленного воздуха.
Пример 1. Горячекатаную трубу из стали 45Х, имеющую наружный диаметр 92 мм, длину - 1100 мм и толщину стенки - 13 мм, после ее выхода из калибровочного стана охлаждали от температуры 880°С, при которой сталь 45Х имеет аустенитное состояние, до температуры 260°С со скоростью, равной 31°С/с, что для этой стали гарантированно исключает распад аустенита. Данную скорость охлаждения обеспечили выдержкой трубы в воде, имеющей температуру 35°С, в течение 20 с, после чего трубу охлаждали на воздухе до температуры не более 60°С. Далее трубу нагревали до температуры 740°С в течение 1 мин и выдерживали при этой температуре в течение 3 мин, осуществляя нагрев и выдержку путем поступательного перемещения трубы со скоростью 0,017 м/с через индуктор диаметром 180 мм и длиной 4 м, питаемый переменным током частотой 50 Гц под напряжением 380 В. После выхода из индуктора трубу охлаждали на воздухе до температуры окружающей среды.
Механические свойства готовых труб следующие: предел текучести - 510 540 МПа, предел прочности - 720 760 МПа, относительное удлинение - 22 25%, ударная вязкость при температуре 20°С - 1,4 1,6 МДж/м2, а при -40°С - 0,7 0,9 МДж/м2. Полученный результат показывает, что трубы могут успешно эксплуатироваться в условиях отрицательных температур.
Пример 2. Трубу из стали 30ХМА диаметром 102 мм с толщиной стенки 7 мм и длиной 1500 мм после ее выхода из калибровочного стана охлаждали воздушным потоком, создаваемым вентилятором мощностью 25 кВт, с температуры 880°С до температуры 260°С в течение 50 с, что обеспечило скорость охлаждения 12,5°С/с, затем охлаждали на спокойном воздухе до температуры не выше 60°С. Далее трубу нагревали до температуры 760°С за 1 мин и выдерживали в при этой температуре в течение 4 мин путем поступательного перемещения со скоростью 0,013 м/с через индуктор диаметром 180 мм и длиной 4 м, питаемый переменным током 50 Гц под напряжением 380 В, после чего окончательно охлаждали на воздухе.
Механические свойства труб: предел текучести - 630 650 МПа, предел прочности - 920 950 МПа, относительное удлинение - 20 22%, ударная вязкость - 0,9 1,2 МДж/м2. Это означает, что эффект обратимой отпускной хрупкости был подавлен.
Класс C21D9/08 полых изделий или труб
Класс C21D8/10 при изготовлении полых изделий