способ обработки расплава серого чугуна наносекундными электромагнитными импульсами (нэми) для повышения теплопроводности, коррозионной стойкости и жаростойкости

Классы МПК:B22D27/20 прочие способы воздействия на структуру зерна или строение материала; выбор компонентов для этого 
Автор(ы):, , , , ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" (RU)
Приоритеты:
подача заявки:
2007-06-27
публикация патента:

Изобретение относится к литейному производству. Способ включает нагрев и электромагнитную обработку расплава наносекундными электромагнитными импульсами. Расплав нагревают до температуры 1500°С и выдерживают при этой температуре в течение 5 минут. Электромагнитную обработку расплава проводят при температуре 1350°С в течение 10 минут. Достигается повышение теплопроводности и жаростойкости расплава. 1 ил.

способ обработки расплава серого чугуна наносекундными электромагнитными   импульсами (нэми) для повышения теплопроводности, коррозионной   стойкости и жаростойкости, патент № 2354496

Формула изобретения

Способ обработки расплава серого чугуна, включающий нагрев и электромагнитную обработку расплава, отличающийся тем, что нагрев расплава осуществляют до температуры 1500°С, выдерживают его при этой температуре в течение 5 мин, а затем при температуре 1350°С проводят электромагнитную обработку расплава наносекундными электромагнитными импульсами в течение 10 мин.

Описание изобретения к патенту

Изобретение относится к литейному производству и может быть использовано для получения отливок из серых чугунов, требующих высокой теплопроводности с одновременным повышением их жаро- и коррозионной стойкости.

Известны способы обработки расплавов вакуумом, электрическим током, ультразвуком и вибрацией [1-4], снижающие газонасыщенность в алюминиевых и чугунных отливках, что должно способствовать увеличению их теплопроводности. Также существует способ обработки расплавов защитно-восстановительными флюсами, снижающими газонасыщенность в отливках [4], что приводит к увеличению теплопроводности.

Недостатками приведенных выше способов обработки расплавов являются использование дорогостоящего оборудования и ухудшение санитарно-гигиенических условий труда при использовании флюсов.

Все вышеперечисленные способы не позволяют увеличивать теплопроводность и коррозионностойкость более чем в 2,0 раза. В качестве наиболее близкого аналога по совокупности существенных признаков и назначению принят способ обработки жидкого чугуна, раскрытый в авторском свидетельстве SU 865512, B22D 27/02, 23.09.1981 [6].

Задача данного изобретения - увеличение степени усвоения реагентов и повышение механических свойств чугуна. Поставленная цель достигнута наложением на расплав электромагнитного поля и пропусканием электрического тока. Электромагнитное поле накладывают с частотой 6-15 Гц и напряженностью (1,5-2)-10 Э и пропускают через расплав электрический ток напряжением 30 В, при силе тока 2,5 А в течение 2-3 мин. При этом увеличился предел прочности при изгибе, время действия модификатора и повысился коэффициент усвоения модификатора или легирующей добавки.

Недостатки этого способа заключаются в том, что:

- электромагнитное поле накладывают с частотой 6-15 Гц и напряженностью (1,5-2)·103 Э;

- не рассматривается влияние электромагнитного поля на теплопроводность, жаро- и коррозионностойкость серого чугуна.

В сравнении с прототипом заявленный способ обладает новизной, отличаясь созданием в расплаве однополярных импульсов тока длительностью менее 1 нс и мощностью более 1 МВт.

Технической задачей, на решение которой направлено данное изобретение, является повышение теплопроводности и коррозионностойкости серого чугуна при воздействии на расплав наносекундных электромагнитных импульсов. При пропускании через расплавленный металл мощных электромагнитных импульсов тока в некоторые моменты времени возникают электромагнитные поля с очень высокой напряженностью до 10 8способ обработки расплава серого чугуна наносекундными электромагнитными   импульсами (нэми) для повышения теплопроводности, коррозионной   стойкости и жаростойкости, патент № 2354496 1010 В/м. Эти поля приводят к изменению свойств расплавленного и затвердевшего металла.

Технический результат - получение серого чугуна с повышенными теплопроводностью (более 2,0 раза) и коррозионностойкостью в среде 38%-ного раствора соляной кислоты (в 1,9-3,2 раза) при обработке его жидкой фазы наносекундными электромагнитными импульсами (НЭМИ).

Сущность изобретения поясняется чертежом, где представлены графики влияния времени обработки НЭМИ жидкой фазы на теплопроводность и коррозионностойкость серого чугуна.

В ходе работы применяют серый чугун следующего состава, мас.%: 3,7 С; 1,0 Si; 0,5 Mn; 0,1 Р и S.

Схема установки, методика облучения расплавов и основные характеристики применяемого генератора НЭМИ (ГНИ-01-1-6) приведены в описании патента [5].

Характеристики оборудования, используемого для обработки жидкой фазы наносекундными электромагнитными импульсами, методы определения жаро- коррозионностойкости:

1. Генератор НЭМИ (ГНИ-01-1-6) имеет следующие характеристики: полярность импульсов - положительная; амплитуда импульсов на нагрузке 50 Ом - 6000 В; длительность импульсов на половинном уровне - 0,5 нс; максимальная допустимая частота следования генерируемых импульсов - 1 кГц; задержка выходного импульса запуска - 120 нс; максимальный ток, потребляемый генератором во всем диапазоне питающих напряжений, не более 1,7 А при частоте 61 кГц.

2. Исследования коррозионностойкости, основанные на определении количества выделившегося водорода (объемный метод) в процессе взаимодействия металла с коррозионной средой (38%-ным раствором соляной кислоты) в газометрической установке (Коб.Н2). Параллельно определялась потеря массы образца по стандартной методике;

способ обработки расплава серого чугуна наносекундными электромагнитными   импульсами (нэми) для повышения теплопроводности, коррозионной   стойкости и жаростойкости, патент № 2354496 ,

где способ обработки расплава серого чугуна наносекундными электромагнитными   импульсами (нэми) для повышения теплопроводности, коррозионной   стойкости и жаростойкости, патент № 2354496 V - среднее изменение объема выделяющегося газа, приведенного к нормальным условиям, при установившейся скорости его выделения за определенный промежуток времени, см3;

способ обработки расплава серого чугуна наносекундными электромагнитными   импульсами (нэми) для повышения теплопроводности, коррозионной   стойкости и жаростойкости, патент № 2354496 способ обработки расплава серого чугуна наносекундными электромагнитными   импульсами (нэми) для повышения теплопроводности, коррозионной   стойкости и жаростойкости, патент № 2354496 - время проведения эксперимента, час;

S - площадь поверхности образца, см2.

способ обработки расплава серого чугуна наносекундными электромагнитными   импульсами (нэми) для повышения теплопроводности, коррозионной   стойкости и жаростойкости, патент № 2354496 V=р·0,9499, где р - число делений в газометрической установке. Коррозионная среда - 38%-ный раствор соляной кислоты. Коррозионностойкость чугуна изучается двумя способами: по изменению массы образца и объемному показателю Коб.Н2.

Выбор температуры перегрева 1500°С обоснован следующими соображениями:

Для полного растворения графитных включений разработан температурно-временной режим плавки серого чугуна, заключающийся в его нагреве до 1500°С с выдержкой при этой же температуре в течение 5 минут [7, 8]. Охлаждение расплава до температуры 1350°С со скоростью 20способ обработки расплава серого чугуна наносекундными электромагнитными   импульсами (нэми) для повышения теплопроводности, коррозионной   стойкости и жаростойкости, патент № 2354496 100°С/мин не приводит к кристаллизации графитных включений, что экспериментально доказано методом закалки жидкого чугуна с температуры 1350°С.

Пример 1

Нагревают чугун до 1500°С, после пятиминутной выдержки охлаждают до температуры 1350°С и обрабатывают его НЭМИ в течение 5, 10, 15 и 20 мин. После отключения генератора расплав кристаллизуют со скоростью 20способ обработки расплава серого чугуна наносекундными электромагнитными   импульсами (нэми) для повышения теплопроводности, коррозионной   стойкости и жаростойкости, патент № 2354496 50°С/мин. При такой скорости охлаждения расплава гарантируется получение серого чугуна с пластинчатым графитом.

Как видно из чертежа, теплопроводность способ обработки расплава серого чугуна наносекундными электромагнитными   импульсами (нэми) для повышения теплопроводности, коррозионной   стойкости и жаростойкости, патент № 2354496 чугуна изменяется от продолжительности обработки расплава НЭМИ по экстремальной зависимости с максимумом ее значения при 10-минутной обработке. Теплопроводность возрастает более чем в 2,0 раза по сравнению с необработанным НЭМИ чугуном.

Пример 2

При неизменных условиях плавки чугуна и охлаждения расплава до 1350°С исследовалось влияние продолжительности обработки расплава НЭМИ (5, 10, 15 и 20 мин) на коррозионностойкость серого чугуна (см. чертеж).

Установлено, что при 10-минутной обработке расплава НЭМИ наблюдаются минимумы показателей коррозии Коб.Н2 и способ обработки расплава серого чугуна наносекундными электромагнитными   импульсами (нэми) для повышения теплопроводности, коррозионной   стойкости и жаростойкости, патент № 2354496 m/S. По показателю Коб.Н2 коррозионностойкость серого чугуна возрастает в 3,2 раза, а по показателю способ обработки расплава серого чугуна наносекундными электромагнитными   импульсами (нэми) для повышения теплопроводности, коррозионной   стойкости и жаростойкости, патент № 2354496 в 2,14 раза.

В вышеуказанных примерах при оптимальной продолжительности обработки расплава НЭМИ наблюдаются максимальные значения теплопроводности и жаро- и коррозионной стойкости серого чугуна.

Список использованных источников:

1. Справочник «Чугун». Под редакцией А.Д.Шермана и А.Н.Жукова. - М.: Металлургия, 1991, с.92.

2. Справочник по чугунному литью. Изд-е 3-е, переработанное и дополненное. Под редакцией Н.Г.Гиршовича. - Л.: Машиностроение, 1978, с.59-60.

3. М.В.Мальцев. Металлография промышленных цветных металлов и сплавов. 2-ое издание, переработанное и дополненное. - М.: Металлургия, 1970, с.129-130.

4. Муравьев В.И., Якимов В.И., Ри Хосен и др. Изготовление литых заготовок в авиастроении. - Владивосток: Дальнаука, 2003, 611 с.

5. Патент RU 2287605 С1. Способ обработки расплава меди и ее сплавов наносекундными электромагнитными импульсами (НЭМИ) для повышения их теплопроводности. 21.03.2005 Авторы: Ри Э.Х., Ри Хосен, Белых В.В.

6. Патент SU 865512, B22D 27/02, 23.09.1981.

7. Ри Хосен, Худокормов Д.Н., Тазиков Э.Б. Выбор температурных режимов обработки расплавов чугуна на основе анализа, структурно-чувствительных свойств. Литейное производство. 1982 г., № 5.

8. Авт. св. СССР № 954425 от 21.05.1980 г. Способ легирования чугуна. Ри Хосен, Клочнев Н.И., Тейх В.А. и др.

Класс B22D27/20 прочие способы воздействия на структуру зерна или строение материала; выбор компонентов для этого 

способ изготовления толстостенных отливок из чугуна с шаровидным графитом -  патент 2510306 (27.03.2014)
модифицирующий лигатурный пруток ai-sc-zr -  патент 2497971 (10.11.2013)
способ получения высокопрочного чугуна с вермикулярным графитом внутриформенным модифицированием лигатурами системы fe-si-рзм -  патент 2497954 (10.11.2013)
добавки, уменьшающие размер зерна стали, способы изготовления и использование -  патент 2449027 (27.04.2012)
способ изготовления толстостенных отливок из чугуна с шаровидным графитом -  патент 2440214 (20.01.2012)
способ получения слитков из алюминиевых сплавов полунепрерывным литьем -  патент 2430807 (10.10.2011)
способ и устройство для получения жидко-твердой металлической композиции -  патент 2404274 (20.11.2010)
способ изготовления фасонных отливок из серого чугуна -  патент 2384630 (20.03.2010)
способ изготовления отливок рабочих колес погружных многоступенчатых центробежных насосов для добычи нефти (варианты) -  патент 2370339 (20.10.2009)
способ обработки жидкой меди наносекундными электромагнитными импульсами (нэми) для повышения ее жаро- и коррозионностойкости -  патент 2355511 (20.05.2009)
Наверх