способ получения нитридов металлов

Классы МПК:C01B21/076 с титаном или цирконием
Автор(ы):, , ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования Томский политехнический университет (RU)
Приоритеты:
подача заявки:
2007-07-24
публикация патента:

Изобретение может быть использовано для изготовления керамических и композиционных материалов. Экзотермическую смесь, состоящую из оксида азотируемого металла и энергетической составляющей, воспламеняют на воздухе при атмосферном давлении. В качестве энергетической добавки используют нанопорошок алюминия. В качестве оксида азотируемого металла используют TiO2 или ZrO 2 в количестве 60-80 мольн.%. Изобретение позволяет упростить технологию и удешевить получаемую продукцию. 2 табл.

Формула изобретения

Способ получения нитридов металлов, включающий приготовление экзотермической смеси, состоящей из оксида азотируемого металла (TiO2 или ZrO2) и энергетической составляющей, и ее воспламенение в присутствии азотирующего агента, отличающийся тем, что в качестве азотирующего агента используют воздух при атмосферном давлении, а в качестве энергетической составляющей используют нанопорошок алюминия при следующем соотношении компонентов, мол.%:

энергетическая составляющая 60-80
оксид азотируемого металла остальное

Описание изобретения к патенту

Изобретение относится к области порошковой технологии, а именно к получению материалов, содержащих нитриды металлов, и может найти применение при изготовлении керамических и композиционных материалов и дисперсно-упрочненных изделий.

Известен способ [Патент РФ № 2083487, МПК С01В 21/06, опубл. 10.07.1997] получения нитридов металлов, включающий подачу в реактор порошка металла и азота под давлением 0,1-5,0 МПа с последующим воспламенением.

Недостатком этого способа является использование специального оборудования, что усложняет технологию. Кроме того, в данном способе используется чистый азот под высоким давлением, что удорожает получаемый продукт.

Наиболее близким по технической сущности является способ получения нитридов металлов [Патент РФ № 2256604, МПК С01В 21/076, опубл. 27.11.2004], который был выбран за прототип. Согласно этому способу приготавливают смесь из оксида азотируемого металла, азида щелочного металла и азотируемого металла как энергетической составляющей. Затем смесь воспламеняют в среде азота под давлением.

Недостатком этого способа является использование высокого давления в процессе синтеза и наличие в продуктах синтеза щелочи, которая может привести к их деградации. Кроме того, в этом способе используется дорогостоящий и опасный при хранении реагент - азид натрия.

Основной технической задачей изобретения является упрощение технологии за счет использования воздуха в качестве азотирующего агента, а в качестве энергетической добавки - нанопорошка алюминия.

Основная техническая задача достигается тем, что в заявляемом способе получения нитридов металлов, согласно которому, так же, как и в прототипе, приготовляют экзотермическую смесь, состоящую из оксида азотируемого металла и энергетической составляющей и воспламеняют ее в присутствии азотирующего агента, в соответствии с предложенным решением, в качестве азотирующего агента используют воздух при атмосферном давлении, а в качестве энергетической составляющей используют нанопорошок алюминия при следующем соотношении компонентов, мольн.%:

энергетическая составляющая 60-80
оксид азотируемого металла остальное

В результате использования воздуха при атмосферном давлении в качестве азотирующего агента происходит упрощение технологии, так как нет необходимости в применении в качестве реагентов чистого азота и дорогостоящего и опасного при хранении азида натрия и высокого давления для проведения процесса синтеза. Кроме того, упрощение технологии происходит за счет использования нанопорошка алюминия в качестве энергетической добавки, так как нанопорошок алюминия в отличие от порошков титана и циркония не склонен к пирофорности, устойчив на воздухе до 400-450°С, но при инициировании хорошо горит на воздухе, что делает возможным проведение синтеза без использования сложного оборудования (реактора).

Перечень иллюстративного материала

В таблице 1 приведены составы исходных смесей оксида титана и нанопорошка алюминия и содержание в полученных продуктах нитрида титана по отношению к остаточному оксиду титана.

В таблице 2 приведены составы исходных смесей оксида циркония и нанопорошка алюминия и содержание в полученных продуктах нитрида циркония по отношению к остаточному оксиду циркония.

Пример конкретного выполнения

Для эксперимента в качестве исходных компонентов использовали порошок оксида азотируемого металла - TiO2 (промышленный порошок марки хч), ZrO 2 (промышленный порошок марки осч) и нанопорошок алюминия (получен с помощью электрического взрыва алюминиевых проводников на опытно-промышленной установке УДП-4Г, напряжение на взрываемом проводнике - 24 кВ, энергия, вводимая в проводник, - 1,45 энергии сублимации взрываемого проводника, среда - аргон, форма частиц - сферическая, содержание металлического алюминия - 92 мас.%, площадь удельной поверхности - 12 м2/г).

Из порошков готовили смеси массой 4 г при следующем соотношении компонентов, мольн.%:

энергетическая составляющая, 40; 56; 60; 70; 76; 80; 86; 90;
оксид азотируемого металла остальное

Образцы смесей приготавливали методом сухого смешения с применением малых нагрузок, смешение осуществляли в течение 15 минут. Подготовленные образцы высыпали на подложку из нержавеющей стали (толщина листа - 3 мм, марка стали 18Х12Н10Т), придавая насыпанному материалу коническую форму для улучшенной фильтрации воздуха в зону реакции. Образцы воспламеняли в воздухе: процесс горения инициировали пропусканием импульса электрического тока (6 А) через нихромовую спираль (диаметр проволоки - 0,3 мм), находящуюся в контакте с исходной смесью. В результате сгорания образовывались спеки, которые измельчали с помощью шаровой мельницы (помол в течение 0,5 часа) и подвергали рентгенофазовому анализу (метод порошка, дифрактометр ДРОН-3М, CuКа-излучение).

В таблицах 1 и 2 представлены составы исходных смесей и содержание нитрида металла. При содержании в исходной смеси энергетической составляющей менее 60 мольн.% выход нитрида азотируемого металла низок вследствие невысокой температуры горения смесей, которая недостаточна для химического связывания азота воздуха [1]. При содержании в исходной смеси нанопорошка алюминия более 80 мольн.% прирост содержания нитридов азотируемых металлов замедляется, поэтому дальнейшее повышение содержания нанопорошка алюминия в исходной смеси нецелесообразно из-за удорожания получаемого продукта. Наиболее оптимальный состав смесей содержит от 60 до 80 мольн.% нанопорошка алюминия.

Литература

1. Ильин А.П., Громов А.А. Горение алюминия и бора в сверхтонком состоянии. Томск: Изд-во Том. ун-та, 2003, 155 с.

Таблица 1
Содержание энергетической составляющей в исходной смеси, мольн.% Содержание оксида титана в исходной смеси, мольн.% Содержание в полученных продуктах нитрида титана по отношению к остаточному оксиду титана, % Примечание
3070 2способ получения нитридов металлов, патент № 2355631
4555 6способ получения нитридов металлов, патент № 2355631
6040 31 Заявляемый способ
6337 33
76 24 98
80 20 91
86 14 92способ получения нитридов металлов, патент № 2355631

Таблица 2
Содержание энергетической составляющей в исходной смеси, мольн.% Содержание оксида циркония в исходной смеси, мольн.% Содержание в полученных продуктах нитрида циркония по отношению к остаточному оксиду циркония, % Примечание
4060 2способ получения нитридов металлов, патент № 2355631
5644 7способ получения нитридов металлов, патент № 2355631
6040 32 Заявляемый способ
7030 68
76 24 72
80 20 78
86 14 87способ получения нитридов металлов, патент № 2355631
9010 98способ получения нитридов металлов, патент № 2355631

Класс C01B21/076 с титаном или цирконием

способ получения нитрида циркония -  патент 2522601 (20.07.2014)
способ получения порошка нитрида титана -  патент 2488549 (27.07.2013)
способ получения нитрида тугоплавкого металла, изделия из него, полученные этим способом, и их применение -  патент 2337058 (27.10.2008)
способ получения нитридов металлов -  патент 2256604 (20.07.2005)
способ получения нитрида титана -  патент 2247070 (27.02.2005)
способ получения карбонитрида титана -  патент 2175021 (20.10.2001)
способ получения порошков тугоплавких соединений на основе титана -  патент 2149076 (20.05.2000)
способ получения нитрида титана -  патент 2089489 (10.09.1997)
способ получения сложного карбонитрида -  патент 2023656 (30.11.1994)
Наверх