способ воздушного охлаждения секционированного вентильно-индукторного двигателя и секционированный вентильно-индукторный двигатель с системой воздушного охлаждения
Классы МПК: | H02K9/10 охлаждающей газовой средой, протекающей по замкнутому контуру, часть которого расположена вне корпуса машины H02K29/00 Двигатели или генераторы с бесконтактной коммутацией, осуществляемой, например, с помощью газоразрядных, электронных или полупроводниковых приборов |
Автор(ы): | Ремезов Александр Николаевич (RU), Сорокин Антон Владимирович (RU), Кочанов Юрий Иванович (RU), Русаков Анатолий Михайлович (RU), Жердев Игорь Александрович (RU), Шатова Ирина Владимировна (RU), Крылов Юрий Алексеевич (RU), Докукин Александр Львович (RU) |
Патентообладатель(и): | Общество с ограниченной ответственностью "Центртехкомплект" (RU) |
Приоритеты: |
подача заявки:
2008-07-09 публикация патента:
10.06.2009 |
Изобретение относится к области электротехники, в частности к секционированным вентильно-индукторным двигателям большой мощности с замкнутой системой принудительного воздушного охлаждения. Технический результат изобретения - повышение эффективности отвода тепла от наиболее нагруженных в тепловом отношении элементов вентильно-индукторного двигателя, снижение их рабочей температуры и соответствующее увеличение надежности двигателя. Согласно изобретению секции (7, 8) предлагаемого вентильно-индукторного двигателя последовательно охлаждают воздухом от воздухоохладителя (22) с помощью вентилятора (21) и возвращают нагретый воздух в воздухоохладитель. Каждую секцию охлаждают тремя потоками воздуха через пазы пакетов статора и ротора, каналы внутреннего охлаждения пакетов статора и каналы наружного охлаждения секции, а после охлаждения каждой секции, кроме последней, смешивают указанные потоки в межсекционной камере (26). В корпусе (1) двигателя на подшипниках установлен вал (6). Замкнутая система принудительного воздушного охлаждения конструктивно сопряжена с корпусом, в котором размещены секции двигателя. Каждая секция содержит зафиксированные на валу зубчатые пакеты (15, 16) ротора, станину (9), в расточке которой закреплены кольцевая обмотка (14) возбуждения и зубчатые пакеты (10, 11) статора с уложенными в их пазах фазными обмотками (12). Система охлаждения включает каналы (25) наружного охлаждения, образованные между внутренней поверхностью корпуса и оребренной в аксиальном направлении наружной поверхностью станины каждой секции, каналы (29) внутреннего охлаждения, которые сообщаются посредством внутрисекционной камеры (27, 28) и попарно выполнены в аксиальном направлении под пазами пакетов статора каждой секции, межсекционную смесительную камеру 26 и замкнутый на корпус воздуховод (20), в котором размещены вентилятор и воздухоохладитель. Канал наружного охлаждения образован с помощью дистанционных распорок (19). Воздухоохладитель, установлен на корпусе. Вентилятор может быть кинематически связан с валом двигателя или иметь автономный привод. 2 н. и 4 з.п. ф-лы, 2 ил.
Формула изобретения
1. Способ охлаждения секционированного вентильно-индукторного двигателя, заключающийся в том, что охлаждают последовательно все секции двигателя воздухом от воздухоохладителя с помощью вентилятора и возвращают нагретый воздух в воздухоохладитель, при этом каждую секцию охлаждают, по меньшей мере, тремя потоками воздуха через пазы пакетов статора и ротора, каналы внутреннего охлаждения пакетов статора и каналы наружного охлаждения секции, а после охлаждения каждой секции, кроме последней, смешивают указанные потоки в межсекционной камере.
2. Секционированный вентильно-индукторный двигатель, содержащий корпус, в котором на подшипниках установлен вал, замкнутую систему принудительного воздушного охлаждения, конструктивно сопряженную с корпусом, и секции, размещенные в корпусе, при этом каждая секция содержит зафиксированные на валу зубчатые пакеты ротора, станину, в расточке которой закреплены кольцевая обмотка возбуждения и зубчатые пакеты статора с уложенными в их пазах фазными обмотками, а система принудительного воздушного охлаждения - каналы наружного охлаждения, образованные между внутренней поверхностью корпуса и оребренной в аксиальном направлении наружной поверхностью станины каждой секции, каналы внутреннего охлаждения, сообщенные внутрисекционной камерой и попарно выполненные в аксиальном направлении под пазами пакетов статора каждой секции, по меньшей мере, одну межсекционную камеру и замкнутый на корпус воздуховод, в котором размещены вентилятор и воздухоохладитель.
3. Двигатель по п.2, отличающийся тем, что воздухоохладитель установлен на корпусе.
4. Двигатель по п.2, отличающийся тем, что каналы наружного охлаждения образованы с помощью дистанционных распорок.
5. Двигатель по п.2, отличающийся тем, что вентилятор снабжен автономным приводом.
6. Двигатель по п.2, отличающийся тем, что вентилятор кинематически связан с валом двигателя.
Описание изобретения к патенту
Область техники
Изобретение относится к частотно-регулируемому электроприводу и может быть применено при конструировании и изготовлении вентильно-индукторных двигателей большой мощности, снабженных системой воздушного охлаждения с замкнутым циклом принудительной вентиляции. Такие двигатели могут быть использованы, в частности, для замены трехфазных высоковольтных двигателей мощностью более одного мегаватта при переводе существующих электроприводов переменного тока на частотное регулирование.
Уровень техники
Известны способы воздушного охлаждения трехфазных электрических машин с замкнутым циклом принудительной вентиляции и конструкции, осуществляющие эти способы [1-5]. Решения [1-5] характеризуются охлаждением машины несколькими воздушными потоками, а конструкции машин содержат корпус, в котором размещены статор с фазными обмотками и ротор, вал которого установлен на подшипниках в торцевых крышках корпуса, воздухоохладители, камеры системы охлаждения и вентиляционные каналы в сердечнике статора.
Общие недостатки указанных выше способов охлаждения и конструкций трехфазных электрических машин, осуществляющих эти способы, - необходимость использования сложной системы воздуховодов и трудоемкой технологии изготовления, что вызвано, в частности, внутрикорпусным размещением воздухоохладителей и радиальным выполнением вентиляционных каналов в сердечнике статора. Кроме того, трехфазные электрические двигатели имеют ограниченные возможности по регулированию вращающего момента и частоты и при увеличении номинальной мощности требуют повышения значений фазного напряжения и тока.
Известен вентильно-индукторный двигатель, содержащий корпус с торцевыми крышками, в которых на подшипниках установлен вал двигателя, и закрепленные в его расточке два зубчатых пакета статора, в пазах которых уложены фазные обмотки, кольцевую обмотку возбуждения между пакетами статора и два зубчатых пакета ротора, зафиксированных на валу двигателя [6]. Корпус двигателя [6] изготовлен из магнитомягкого материала и выполняет функцию станины статора, формирующей совместно с пакетами статора его магнитную цепь. Двигатель [6] свободен от вышеуказанных недостатков решений [1-5].
Недостаток конструкции [6], состоит в том, что при повышении номинальной мощности двигателя и соответствующем увеличении его размеров ухудшается теплоотвод от пакетов статора, на который приходится основная доля тепловых потерь в двигателе [6]. Это приводит к повышению температуры фазных обмоток, обмотки возбуждения, внутренних областей пакетов статора и соответствующему снижению надежности двигателя.
Известны способ охлаждения и конструкция секционированного вентильно-индукторного двигателя, содержащего корпус, заполненный охлаждающей средой, и установленные на общем валу секции, каждая из которых содержит два закрепленных в станине пакета статора, в пазах которых уложены фазные обмотки, и два зубчатых пакета ротора [7]. Общая мощность и, соответственно, тепловые потери распределены между секциями двигателя, что облегчает их тепловой режим. При этом секции двигателя [7] размещены вплотную друг к другу на общем валу из магнитного материала и применены решения, обеспечивающие разделение магнитных потоков секций. Это позволило минимизировать осевые размеры двигателя при наращивании его мощности увеличением числа секций, однако ухудшило условия теплоотвода и потребовало применения жидкостной (масляной) системы охлаждения, поскольку воздушное охлаждение для секционированного вентильно-индукторного двигателя [7] недостаточно эффективно.
Раскрытие существа изобретения
Задача, решаемая изобретениями, образующими группу, - обеспечить эффективный теплоотвод от греющихся частей вентильно-индукторного двигателя с помощью простой в конструктивном и технологическом отношениях системы замкнутого принудительного воздушного охлаждения.
Технический результат изобретений, образующих группу, - повышение эффективности отвода тепла от наиболее нагруженных в тепловом отношении элементов вентильно-индукторного двигателя, снижение их рабочей температуры и соответствующее увеличение надежности двигателя.
Заявляемый способ охлаждения многосекционного вентильно-индукторного двигателя заключается в том, что охлаждают последовательно все секции двигателя воздухом от воздухоохладителя с помощью вентилятора и возвращают нагретый воздух в воздухоохладитель, при этом каждую секцию охлаждают, по меньшей мере, тремя потоками воздуха через пазы пакетов статора и ротора, каналы внутреннего охлаждения пакетов статора и канал наружного охлаждения секции, а после охлаждения каждой секции, кроме последней, смешивают указанные потоки в межсекционной камере.
Секционированный вентильно-индукторный двигатель, в котором осуществлен заявляемый способ, содержит корпус, в котором на подшипниках установлен вал, замкнутую систему принудительного воздушного охлаждения, конструктивно сопряженную с корпусом, и секции, размещенные в корпусе, при этом каждая секция содержит зафиксированные на валу зубчатые пакеты ротора, станину, в расточке которой закреплены кольцевая обмотка возбуждения и зубчатые пакеты статора с уложенными в их пазах фазными обмотками, а система принудительного воздушного охлаждения - каналы наружного охлаждения, образованные между внутренней поверхностью корпуса и оребренной в аксиальном направлении наружной поверхностью станины каждой секции, каналы внутреннего охлаждения, сообщенные внутрисекционной камерой и попарно выполненные в аксиальном направлении под пазами пакетов статора каждой секции, по меньшей мере, одну межсекционную камеру и замкнутый на корпус воздуховод, в котором размещены вентилятор и воздухоохладитель.
Приведенные совокупности признаков позволяют получить указанный выше технический результат.
Изобретение имеет развития, которые уточняют конструкцию двигателя и состоят в том, что каналы наружного охлаждения образованы с помощью дистанционных распорок, воздухоохладитель установлен на корпусе, а вентилятор может быть кинематически связан с валом двигателя или иметь автономный привод.
Осуществление изобретения с учетом развитии.
На фиг.1 и 2 показан пример осуществления предлагаемого способа в двухсекционном вентильно-индукторном двигателе. На фиг.1 представлен общий вид двигателя, на фиг.2 - сечение корпуса двигателя со статором секции, установленным без обмоток.
Двигатель содержит корпус 1 с торцевыми крышками 2 и 3, в которых на подшипниках 4, 5 установлен немагнитный общий вал 6, выполненный, например, из нержавеющей стали. Крышка 2 со стороны рабочего конца вала 6 выполнена глухой, а крышка 3 - проницаемой для воздушного потока. В корпусе 1 размещены секции 7 и 8, каждая из которых имеет статор и два зубчатых пакета ротора. Статор каждой секции двигателя представляет собой сборную конструкцию, включающую станину 9, в расточке которой закреплены шихтованные из листов электротехнической стали пакеты 10 и 11 статора. Пакеты 10 и 11 имеют аксиально направленные зубцы, разделенные пазами. В пазах пакетов 10 и 11 каждой секции уложены фазные обмотки 12, охватывающие соответствующие зубцы обоих пакетов, а между пакетами 10 и 11 с помощью промежуточной втулки 13 закреплена кольцевая обмотка 14 возбуждения.
Два зубчатых пакета 15 и 16 ротора, шихтованные из листов электротехнической стали, зафиксированы на валу 6 в каждой секции двигателя с помощью втулки 17. Втулка 17 выполнена из магнитомягкого материала, что обеспечивает магнитную связь между пакетами 15 и 16 ротора. Пакеты 15 и 16 ротора каждой секции размещены на валу 6 напротив пакетов 10 и 11 статора соответственно и повернуты относительно друг друга на половину зубцового шага так, что напротив зубца пакета 15 располагается впадина пакета 16, и наоборот. Число зубцов пакетов статора и ротора различно.
На наружной поверхности каждой станины 9 выполнены в аксиальном направлении теплорассеивающие ребра 18 (см. фиг.2). Станины 9 каждой секции зафиксированы в корпусе 1 дистанционными распорками 19.
Двигатель имеет систему принудительного охлаждения, включающую замкнутый на корпус 1 воздуховод 20, в котором размещены вентилятор 21 и водяной воздухоохладитель 22, установленный на корпусе 1 в виде надстройки. Внутренний объем корпуса 1 связан с воздуховодом 20 через отверстия, выполненные в верхней части корпуса 1 со стороны выступающего из торцевой крышки 2 рабочего конца вала 6 и в торцевой крышке 3. Вентилятор 21 может быть кинематически связан с валом 6 или иметь автономный привод.
Система охлаждения также включает примыкающие к крышкам 2 и 3 торцевые воздушные камеры 23 и 24, каналы 25 наружного охлаждения, образованные с помощью распорок 19 между внутренней поверхностью корпуса 1 и наружными поверхностями станин 9, оребренными в аксиальном направлении теплорассеивающими ребрами, и межсекционную камеру 26. Кроме того, система охлаждения включает внутрисекционные камеры 27 и 28 между пакетами 10 и 11 каждой секции и каналы 29 внутреннего охлаждения. Каналы 29 каждой секции сообщены через ее внутрисекционную камеру и выполнены в пакетах 10 и 11 в аксиальном направлении так, что под каждым пазом пакета статора размещена пара каналов 29.
Устройство работает следующим образом.
На обмотки 14 возбуждения и фазные обмотки 12 каждой секции, а также на электродвигатель вентилятора 21 подаются от внешних источников соответствующие питающие напряжения, а в водяной контур воздухоохладителя 22 - охлаждающая вода.
В каждой секции двигателя магнитный поток, создаваемый фазными обмотками и обмоткой возбуждения, замыкается через пакеты 15, 16 ротора. Принцип действия двигателя основан на магнитном притяжении зубца пакета ротора к ближайшему зубцу пакета статора. Соответствующие токи в фазных обмотках 12, задаваемые питающими их преобразователями, и неравенство зубцов в пакетах ротора и статора обеспечивают плавное вращение вала 6 с регулируемой частотой и требуемым вращающим моментом.
Охлаждение двигателя осуществляется следующим образом.
Вращающийся вентилятор 21 гонит охлажденный воздух из воздухоохладителя 22 в торцевую камеру 23, где он разделяется на:
- первый поток, проходящий по каналам 25 наружного охлаждения между внутренней поверхностью корпуса 1 и наружными поверхностями станин 9 секций 7 и 8;
- второй поток, проходящий по каналам 29 внутреннего охлаждения и внутрисекционнонным камерам 27, 28 секций 7 и 8;
- третий поток, проходящий через пазы пакетов 10 и 11 статора, пазы пакетов 15, 16 ротора и зазоры между пакетами статора и пакетами ротора.
Первый поток отбирает в каждой секции тепло у станины 9 статора, которая для лучшей теплоотдачи выполнена с теплорассеивающими ребрами, направленными аксиально, вдоль охлаждающего потока. Второй поток отбирает тепло из внутренних областей шихтованных пакетов 10, 11 статора, от фазных обмоток 12 и от обмотки 14 возбуждения, а третий - с зубцовых поверхностей пакетов 10, 11 статора и 15, 16 ротора.
Поскольку основная доля тепловых потерь вентильно-индукторного двигателя выделяется в его статоре, охлаждающие потоки воздуха нагреваются неодинаково. Наиболее интенсивно нагревается воздух в каналах 29, проходящих через внутренние области пакетов статора, а меньше всего - воздух третьего потока. Во внутрисекционных камерах 27, 28 и межсекционной камере 26 слабо нагретый воздух третьего потока смешивается с более горячим воздухом других потоков, а именно в камерах 27, 28 - с воздухом второго потока, выходящим из каналов 29, а в межсекционной камере 26 - еще и с воздухом первого потока.
Охлаждение каждой секции тремя потоками воздуха через пазы пакетов статора и ротора, каналы внутреннего охлаждения пакетов статора и каналы наружного охлаждения и смешение потоков после охлаждения каждой секции, кроме последней, в межсекционной камере в совокупности с другими признаками заявляемого способа приводят к тому, что температура второго потока на входе в очередной пакет статора оказывается ниже температуры этого потока на выходе из предыдущего пакета.
Это улучшает условия охлаждения следующего по направлению воздушного потока пакета статора и в результате снижает температуру последнего пакета 10 секции 7, примыкающего к торцевой камере 2, который работает в наиболее тяжелом тепловом режиме.
Выполнение двигателя из двух и более секций, с системой охлаждения, включающей, каналы наружного охлаждения, образованные между внутренней поверхностью корпуса и оребренными в аксиальном направлении наружными поверхностями станин, внутрисекционные камеры, каналы внутреннего охлаждения, попарно выполненные в аксиальном направлении под пазами пакетов статора каждой секции, и межсекционную камеру обеспечивает в совокупности с другими существенными признаками двигателя, в котором осуществлен заявленный способ, снижение рабочей температуры наиболее нагруженных в тепловом отношении элементов вентильно-индукторного двигателя и соответствующее увеличение надежности двигателя.
Формирование канала наружного охлаждения с помощью дистанционных распорок упрощает изготовление двигателя, а установка воздухоохладителя на корпусе направлена на сокращение осевого габарита двигателя и упрощение конструкции воздуховода,
Источники информации
1. Патент RU 2095919, МПК Н02К 9/08, 1997 г.
2. Патент RU 2258295, МПК Н02К 9/06, Н02К9/16, Н02К 9/18, 2005 г.
3. Патент RU 2267214, МПК Н02К 9/04, 2005 г.
4. Патент RU 2282927, МПК Н02К 9/04, 9/18, 2006 г.
5. Патент RU 2309512, МПК Н02К 9/16 Н02К 9/06, 2007 г.
6. Патент RU 2277284, МПК Н02К 19/10, 29/00, 2006 г.
7. Патент RU 2277285, МПК Н02К 16/00, 29/00, 21/14, 2006 г.
Класс H02K9/10 охлаждающей газовой средой, протекающей по замкнутому контуру, часть которого расположена вне корпуса машины
Класс H02K29/00 Двигатели или генераторы с бесконтактной коммутацией, осуществляемой, например, с помощью газоразрядных, электронных или полупроводниковых приборов