способ съема информационных параметров алюминиевых электролизеров

Классы МПК:C25C3/20 автоматическое управление или регулирование электролизеров
Автор(ы):, , , , , ,
Патентообладатель(и):Громыко Александр Иванович (RU)
Приоритеты:
подача заявки:
2007-10-29
публикация патента:

Изобретение относится к области контроля технологических параметров алюминиевых электролизеров и может быть использовано в электролитическом производстве алюминия для контроля производительности электролизных ванн, падения напряжения на участке анод-расплав алюминия и обнаружения локальных изменений токораспределения в анодном узле и подине алюминиевого электролизера в процессе его эксплуатации. Способ включает измерение электрических параметров отдельных участков электролизера, включая анодный и катодный узлы, определение токораспределения по этим узлам; измерение статистических характеристик флуктуации на участке анод-расплав алюминия, определение отклонений этих величин от нормативных технологических. Кроме этого измеряют сопротивление контактирующих с расплавом алюминия дополнительных электродов, изолированных друг от друга и расплава электролита с помощью стойкой к агрессивной среде электролизной ванны изоляционной трубы, и по величине измеряемого сопротивления электрода, изготовленного из материала с низкой электропроводностью, определяют эффективность работы электролизера. Техническим результатом изобретения является повышение эффективности работы электролизных ванн и увеличение срока их службы. 1 з.п. ф-лы, 2 ил. способ съема информационных параметров алюминиевых электролизеров, патент № 2359072

способ съема информационных параметров алюминиевых электролизеров, патент № 2359072 способ съема информационных параметров алюминиевых электролизеров, патент № 2359072

Формула изобретения

1. Способ контроля технологических параметров алюминиевых электролизеров, включающий измерения постоянной и переменной составляющих падения напряжения на участках электролизной ванны и тока серии и определение отклонений величины электрических параметров от нормативных технологических для определения мест разрушений по этим отклонениям, отличающийся тем, что со стороны одного из торцов электролизной ванны в расплав алюминий + электролит устанавливают стойкую к агрессивной среде и высокой температуре изоляционную трубу, в которую устанавливают два изолированных друг от друга электрода, нижние концы которых погружают в расплав алюминия, причем один из электродов изготавливают из материала с высокой электропроводностью, второй - с низкой электропроводностью, и измеряют дополнительно падение постоянной составляющей напряжения между участками электролизера анодный штырь - анодный кожух, анодный штырь - расплав алюминия, анодный кожух - расплав алюминия, анодный кожух - катодный кожух, расплав алюминия - катодный кожух, расплав алюминия - выводы блюмсов, катодный кожух - выводы блюмсов, а также флуктуации межполюсного промежутка на участке анодный кожух - электрод с высокой электропроводностью и сопротивление электрода с низкой электропроводностью.

2. Способ по п.1, отличающийся тем, что по величине сопротивления электрода с низкой электропроводностью, которое изменяется пропорционально приросту расплава алюминия, определяют эффективность работы электролизера, а по величине измеренных падений напряжений и флуктуаций на указанных участках электролизера и тока серии определяют токораспределение по анодным штырям, отклонение установки штырей от вертикали, величину сопротивления анод - расплав алюминия, разрушения углеродистой подины, токораспределение по блюмсам и отклонение этих величин от нормативных технологических.

Описание изобретения к патенту

Изобретение относится к области контроля технологических параметров и автоматизации процесса производства алюминия из криолит-глиноземных расплавов, более конкретно к автоматическому контролю составляющих падения напряжения на электролизере, для оценки технологического состояния электролизных ванн и выработки регулирующих воздействий.

Известен также «Способ контроля технологических параметров алюминиевых электролизеров. (А.С. СССР № 2057823, опубл. 1996.04.10, аналог), включающий измерение постоянной и переменной составляющих падения напряжения на электролизере и силы тока серии и вычислении сопротивления электролизера.

Недостатком данного способа является отсутствие возможности определения сопротивления отдельных узлов электролизера, токораспределения по отдельным узлам и ряда технологических нарушений, связанных с разрушением отдельных узлов электролизера или погрешностями их установки.

Известен также «Способ обнаружения локальных мест разрушения подины алюминиевого электролизера (Пат. РФ № 2180367, опубл. 2002.03.10, прототип). Способ включает приборные измерения физических параметров конструктивных элементов подины и определение мест разрушений по отклонению величины этих параметров от нормативных технологических. При этом измеряют токовую нагрузку на всех катодных стержнях и определяют места и степень разрушения подины по величине уменьшения токовой нагрузки от нормативной технологической на катодный стержень или на группу катодных стержней. Кроме этого дополнительно измеряют температуру всех катодных стержней и уточняют места и степень разрушения подины по величине уменьшения температуры катодного стержня или группы катодных стержней от нормативной технологии.

Недостатком данного способа (прототипа) является отсутствие возможности определения сопротивления отдельных узлов электролизера, токораспределения в аноде, что ограничивает перечень контролируемых параметров и ряда технологических нарушений, связанных с разрушением отдельных узлов электролизера или погрешностями их установки.

Задачей предлагаемого решения является повышение точности контроля и диагностика технологических параметров - процесса электролиза алюминия.

Для решения поставленной задачи в способ контроля технологических параметров алюминиевых электролизеров, содержащий измерения постоянной и переменной составляющих падения напряжения на участках электролизной ванны и тока серии и определение отклонений величины электрических параметров от нормированных технологических для определения мест нарушений по этим отклонениям, дополнительно со стороны одного из торцов электролизной ванны в расплав алюминий + электролит устанавливают стойкую к агрессивной среде и высокой температуре изоляционную трубу, в которую устанавливают два изолированных друг от друга электрода, нижние концы которых погружают в расплав алюминия, причем один из электродов изготавливают из материала с высокой электропроводностью, второй - с низкой электропроводностью. Дополнительно измеряют падение постоянной составляющей напряжения между участками электролизера: анодный штырь - анодный кожух, анодный штырь - расплав алюминия, анодный кожух - расплав алюминия, анодный кожух - катодный кожух, расплав алюминия - катодный кожух, расплав алюминия - выводы блюмсов, катодный кожух - выводы блюмсов; флуктуации межполюсного промежутка на участке анодный кожух - электрод с высокой электропроводностью; сопротивление электрода с низкой электропроводностью.

По величине измеренных падений напряжений и флуктуаций на указанных участках электролизера и тока серии определяют токораспределение по анодным штырям, отклонение установки штырей от вертикали, величину сопротивления анод - расплав алюминия, разрушения углеродистой подины, токораспределение по блюмсам и отклонение этих величин от нормативных технологических.

По величине сопротивления электрода с низкой электропроводностью, сопротивление которого изменяется пропорционально приросту расплава алюминия, определяют эффективность работы электролизера.

Существенным отличием предлагаемого технического решения является то, что в расплав алюминий + электролит устанавливают со стороны одного из торцов электролизной ванны стойкую к агрессивной среде и высокой температуре изоляционную трубу, в которую устанавливают два изолированных друг от друга электрода, нижние концы которых погружены в расплав алюминия, один из электродов изготавливают из материала с высокой электропроводностью, второй - с низкой электропроводностью и по величине сопротивления электрода с низкой электропроводностью, которое изменяется пропорционально приросту расплава алюминия, определяют эффективность работы электролизера.

Данное существенное отличие позволяет впервые в мировой практике реализовать автоматический способ контроля производительности электролизных ванн за установленный промежуток времени.

Вторым существенным отличием является то, что дополнительно измеряют: падение постоянной составляющей напряжения между участками электролизера анодный штырь - анодный кожух, анодный штырь - расплав алюминия, анодный кожух - расплав алюминия, анодный кожух - катодный кожух, расплав алюминия - катодный кожух, расплав алюминия - выводы блюмсов, катодный кожух - выводы блюмсов; флуктуации межполюсного промежутка на участке анодный кожух - электрод с высокой электропроводностью. По величине измеренных падений напряжений и флуктуаций на указанных участках электролизера и тока серии определяют токораспределение по анодным штырям, отклонение установки штырей от вертикали, величину сопротивления анод - расплав алюминия, разрушения углеродистой подины, токораспределение по блюмсам и отклонение этих величин от нормативных технологических. Это дает возможность повысить точность контроля величины падения напряжения на участке анод - расплав алюминия и вести оптимальную регулировку межполюсного расстояния или сопротивления участка анод - расплав алюминия. Контроль падений напряжения на участках электрической цепи анода и катода решает задачу своевременного определения отклонения технологического режима от установленного регламентом для данной конструкции электролизера. Применение дополнительного электрода, погруженного в расплав алюминия, позволяет повысить точность контроля падения напряжения в электролите, а следовательно, поддерживать оптимальную величину расстояния анод - расплав алюминия. Исключаются погрешности, вызванные токораспределением в анодном и катодном узлах, обусловленные как технологическими работами, так и старением футеровки катода. Улучшаются условия съема флуктуации межполюсного напряжения (шумов) с целью контроля технологического режима и диагностики нарушений в работе электролизной ванны.

На фиг.1 представлен эскизный чертеж электролизной ванны, на котором показаны точки подключения для съема падений напряжения на различных участках электрической цепи. На фиг.1 введены следующие обозначения: 1 - анодный кожух, 2 - расплав алюминия, 3 - погружные электроды, 4 - изоляционная труба, 5 - анодная шина, 6 - анодный стержень, 7 - анод, 8 - электролит, 9 - катодный кожух, 10 - изоляционный материал, 11 - углеродистая подина, 12 - блюмсы, Ry - сопротивления утечки (не предусмотренные технологией электрические контакты между токопроводящими элементами катодного узла и катодным кожухом), 13 - выводы блюмсов, 14 - катодная шина, а, b, с, с', d, k, Xn, Zn - клеммы для подключения устройства съема и предварительной обработки информации.

На фиг.2 представлена структурная схема устройства съема и предварительной обработки информационных сигналов (напряжений), снимаемых с различных участков электролизной ванны. На фиг.2 введены следующие обозначения: 15 - активный НЧ фильтр, 16 - входной коммутатор, 17 - ограничитель, 18 - компаратор, 19 - усилитель низкой частоты, 20 - АЦП, 21 - аттенюатор, 22 - элемент гальванической развязки, 23 - АСУ ТП, 24 - конвертор, 25 - стабилизатор напряжения.

Для реализации способа съема информационных параметров алюминиевых электролизеров (фиг.1) к входам автономного измерительного блока (фиг.2) через клеммы (а, b, с, с', d, k, Xn, Zn) для подключения устройства съема и обработки информации подводят потенциалы напряжений с указанных на фиг.1 участков электролизера.

Информационные сигналы с электролизера одновременно подают на входы размещенных в автономном выносном блоке: активного фильтра нижних частот - 15, входного коммутатора - 16, ограничителя - 17 и сигнальный вход компаратора 18.

С клемм b, с снимают постоянное и переменную составляющую падения напряжения на участке кожух (1) анода - расплав (2) алюминия. Потенциал расплава алюминия снимают погружным электродом 3, изготовленным из материала с высокой электропроводностью, который размещают в изоляционной трубе 4 из карбида кремния типа TN-S (фирма TOKAI CARBON, Италия) с диапазоном рабочих температур до 1200°С, сопротивление изоляции более 1 МОм.

Полосу пропускания фильтра нижних частот 15 выбирают исходя из конструктивных особенностей электролизной ванны и конкретных задач контроля и диагностики технологического процесса. Выделенный сигнал (шумы электролизера) в выбранном диапазоне частот подают на усилитель низкой частоты (19), с выхода которого усиленный сигнал подают на первый вход АЦП - 20.

На выходе входного (16) коммутатора получаем возможность выделить падения напряжения на участках электрической цепи (фиг.1) ванны: а, Xn - анодная (5) шина - анодный (6) стержень; a, b - анодная (5) шина - кожух (1) анода; Xn, b - анодный (6) стержень - кожух (1) анода. Контроль этих напряжений позволяет контролировать неравномерность токораспределения и потери энергии в аноде (6).

Наиболее важной для управления технологическим процессом является информация о величине падения напряжения в электролите 8 (на участке анод (6) - расплав (2) алюминия). Минимальную погрешность в оценке падения напряжения в электролите (8) можно получить, измеряя напряжение в точках b, с - анодный (1) кожух - расплав (2) алюминия. Предлагаемый способ позволяет это осуществить с помощью погружного датчика 3, изолированного от электролита (8) стойкой к агрессивной среде электролизной ванны трубой 4 из изоляционного материала, сохраняющего свои характеристики при температуре окружающей среды способ съема информационных параметров алюминиевых электролизеров, патент № 2359072 1000°С.

В случае отсутствия или выхода из строя погружного датчика 3 близкие по точности результаты можно получить по замерам падения напряжения в точках b, d - участка анодный (1) кожух - катодный (9) кожух. Из-за низкого сопротивления изоляционного материала 10 между кожухом катода и углеродистой подиной (11) и блюмсами (12), а также образования после пуска электролизера массы сопротивлений утечки Ry кожух катода эквипотенциален. Потенциал кожуха катода (9) в любой его точке соответствует средней величине падения напряжения в углеродистой подине (11). По мере увеличения срока эксплуатации ванны этот потенциал все ближе приближается к потенциалу расплава алюминия (2). Суммарная величина Ry не превышает 0,1 Ом, и при входном сопротивлении устройства измерения напряжения, превышающем 100 Ом, Ry не окажет влияния на погрешность измерения.

Клеммы с, способ съема информационных параметров алюминиевых электролизеров, патент № 2359072 используют для измерения сопротивления электродов с и способ съема информационных параметров алюминиевых электролизеров, патент № 2359072 . Величина сопротивления электродов меняется по мере увеличения уровня расплава алюминия в изолирующей трубе 4. По скорости изменения сопротивления электродов, с учетом технологических воздействий на электролизер, судят о приращении металла за определенный промежуток времени.

Контроль падений напряжения на участках: с d - расплав (2) алюминия - кожух (9) катода; с, Zn - расплав (2) алюминия - вывод блюмсов (13); с, k - расплав (2) алюминия - катодная (14) шина; позволяет контролировать процесс разрушения катодной футеровки и неравномерность токораспределения по блюмсам.

С выхода коммутатора (16) контролируемое напряжение поступает на вход делителя (21) напряжения, управляемого компаратором (18), при возникновении анодного эффекта автоматически включается деление в отношении 1/10. С выхода делителя (21) контролируемый сигнал поступает на второй вход АЦП (20). С выхода АЦП (20) сигналы в последовательном цифровом коде поступают через элемент гальванической развязки 22 на вход АСУ ТП (23) (по радиоканалу, витой паре или оптоволоконной линии). По величине измеренных падений напряжений на указанных участках электролизера и тока серии определяют токораспределение по анодным штырям, отклонение установки штырей от вертикали, величину сопротивления анод - расплав алюминия, разрушения углеродистой подины, токораспределение по блюмсам.

Повышение информативности надежности работы предлагаемого способа обеспечивается также за счет высокостабильного напряжения источника питания, включающего последовательно соединенные блоки: ограничитель 17, конвертор 24 и стабилизатор напряжения 25. На вход источника питания подается рабочее напряжение электролизера, интервал изменения которого составляет 2-80 В. Стабилизатор напряжения 25 обеспечивает с выхода «А» стабильное напряжение питания всех активных элементов измерительного блока и подачу опорного напряжения на компаратор 18, чем достигается высокая стабильность работы делителя напряжения 21.

Данное техническое решение позволяет:

1. Впервые в мировой практике реализовать автоматический способ контроля производительности электролизных ванн за установленный промежуток времени.

2. Повысить точность контроля величины падения напряжения на участке анод - расплав алюминия, что даст возможность вести оптимальную регулировку межполюсного расстояния или сопротивления участка анод - расплав алюминия. Контроль падений напряжения на участках электрической цепи анода и катода позволит выявлять отклонения технологического режима от установленного регламентом для данной конструкции электролизера.

Повышение надежности достигается также за счет индивидуального источника питания от постоянного напряжения электролизной ванны.

Класс C25C3/20 автоматическое управление или регулирование электролизеров

способ защиты углеродной футеровки -  патент 2522928 (20.07.2014)
устройство контроля токораспределения в алюминиевых электролизерах -  патент 2484183 (10.06.2013)
способ контроля технологических параметров электролита алюминиевого электролизера -  патент 2471019 (27.12.2012)
устройство для отбора проб расплава в электролизере -  патент 2448199 (20.04.2012)
способ управления алюминиевым электролизером -  патент 2425180 (27.07.2011)
способ подготовки проб кальцийсодержащего электролита алюминиевого производства для анализа состава методом рфа -  патент 2418104 (10.05.2011)
способ удаления угольной пены с поверхности электролита алюминиевого электролизера -  патент 2406788 (20.12.2010)
способ прогнозирования и ранней подготовки алюминиевого электролизера к отключению -  патент 2401326 (10.10.2010)
устройство контроля токораспределения в анодном узле алюминиевых электролизеров -  патент 2401325 (10.10.2010)
устройство для определения уровней металла и электролита в электролизере для получения алюминия -  патент 2398054 (27.08.2010)
Наверх