способ получения средства для селективного удаления сероводорода и меркаптанов из газов
Классы МПК: | B01D53/14 абсорбцией B01D53/52 сероводород |
Автор(ы): | Султанов Рифкат Мухатьярович (RU), Хафизов Фаниль Шамильевич (RU), Хафизов Ильдар Фанилевич (RU), Маликов Александр Иванович (RU), Хайбрахманов Альфред Шарифьянович (RU), Аликин Михаил Александрович (RU), Русаков Игорь Витальевич (RU) |
Патентообладатель(и): | ООО "Эконефтехимтехника" (RU) |
Приоритеты: |
подача заявки:
2007-12-03 публикация патента:
27.06.2009 |
Изобретение относится к области очистки газов от сероводорода и меркаптанов и может быть использовано для получения средства для селективного удаления сероводорода и меркаптанов из газов. Для этого смешивают моноэтаноламин и формальдегид или параформ, взятые в мольном отношении 1:2, полученную смесь подвергают воздействию ультразвука в интервале частот 21,5-22,0 кГц в течение 0,5-1,0 ч при температуре 20-100°С. Полученное средство характеризуется высокой абсорбционной емкостью и селективностью по сероводороду и меркаптанам. При использовании данного средства увеличивается производительность очистки. 1 табл.
Формула изобретения
Способ получения средства для селективного удаления сероводорода и меркаптанов из газов, отличающийся тем, что смешивают моноэтаноламин, формальдегид или параформ, взятые в мольном отношении 1:2, полученную смесь подвергают воздействию ультразвука в интервале частот 21,5-22,0 кГц в течение 0,5-1,0 ч при температуре 20-100°С.
Описание изобретения к патенту
Изобретение относится к области очистки газов от сероводорода и меркаптанов, а именно к способу получения средства для селективного удаления сероводорода и меркаптанов из газов.
Известны способы получения жидких поглотителей для очистки газов от сероводорода [Гудков С.Ф. И др. Технический прогресс в области очистки природного и сжиженных углеводородных газов от сероорганических соединений. - М.: ВНИИЭгазпром, 1975, обзорная информация], заключающиеся в том, что нейтрализующий реагент сероводорода получают путем простого смешивания аминосоединения и воды, в частности моноэтаноламина (МЭА) и воды, в следующих соотношениях, мас. %:
МЭА | 15-20 |
Вода | остальное |
Этот способ получения поглотителя обеспечивает достаточную глубину очистки газа от сероводорода (остаточное содержание H2 S в очищенном газе - 5.72 мг/м3), однако ему присущи и серьезные недостатки: неселективность по отношению к другим кислым газам (CO2, SO2 и т.д.), образование трудноудаляемых побочных продуктов взаимодействия H2 S и МЭА.
В меньшей степени указанные недостатки присущи поглотительным растворам, получаемым на основе смешения третичных аминов и воды [Hydrocarbon Process, 1981, № 6, р.55], т.к. третичным аминам несвойственны реакции химического взаимодействия с H2S. В этом случае селективность по сероводороду не достигается, т.к. комплексообразующие свойства третичных аминов для H2S и для СО2 близки.
Наиболее близким по технической сущности к заявляемому способу является способ получения поглотительного раствора химическим взаимодействием формальдегида и моноэтаноламина, приводящий к 1-гидрокси-2-(1,3-оксазетидин-3-ил)этану (далее ГОАДЭ) [Патент РФ № 2241684].
Получают ГОАДЭ взаимодействием формальдегида и моноэтаноламина при температуре 0-40°С в течение 20-24 часов в присутствии катализатора. Полученный 70%-ный водный раствор ГОАДЭ используют для очистки газов от сероводорода и меркаптанов.
Достоинство описанного поглотительного состава по сравнению с аналогичными на основе МЭА или третичных аминов - высокая селективность по отношению к сероводороду и меркаптанам.
Основными недостатками описанного поглотительного состава являются невысокая емкость по Н2 S и меркаптанам (150 мг H2S на 1 г средства), а также длительность процесса получения ГОАДЭ (20-24 ч).
Задачей настоящего изобретения являются упрощение способа получения нейтрализатора и повышение его абсорбционной емкости по H 2S. Это достигается тем, что в качестве нейтрализатора сероводорода используется средство, полученное ультразвуковым (УЗ) воздействием на смесь формальдегида или параформа и моноэтаноламина (70%-ный водный раствор) в присутствии катализатора в количестве 0.01 мас.%, в течение 0.5-1.0 часа. В результате реакции образуется 1-гидрокси-2-(1,3-оксазетидин-3-ил)этан с более высокими выходами (~99%), чем в известном способе.
В качестве источника ультразвука использовали ультразвуковые диспергаторы УЗДН-А и УЗДН-2Т.
Процесс проводят в интервале частот УЗ 21.5-22 КГц и температуре 20-100°С. Полученный водный раствор средства используют без дальнейшей обработки.
Процесс очистки газов от сероводорода и меркаптанов проводится путем барботирования очищаемого газа через 70%-ный водный раствор полученного средства [1-гидрокси-2-(1,3-оксазетидин-3-ил)этана] при температурах 0-100°С, атмосферном или повышенном давлениях, скорости подачи газа 20-200 ч-1. В результате процесса очистки газов достигается снижение концентрации H2 S до 0.5-1.5 мг/м3, снижение коцентрации меркаптанов до величины не выше 2 мг/м3, при этом концентрация углекислого газа не снижается.
Эффективность заявляемого способа для приготовления средства нейтрализации сероводорода и меркаптанов из газов иллюстрируется примерами 1, 2, 3.
ПРИМЕР 1.
Средство для нейтрализации сероводорода и меркаптанов в газах готовили в термостатированном (20°С) стеклянном реакторе смешиванием моноэтаноламина и формальдегида (37%-ный водный раствор) в соотношении 1 моль: 2 моль в присутствии NaOH (0.01 моль) и последующим ультразвуковым воздействием в интервале частот 21,5-22 кГц на эту смесь в течении 30 минут. Полученный поглотительный раствор в количестве 100 мл помещали в стеклянный абсорбер и через него пропускали газ, содержащий, об.%:
Углеводороды | 90 |
Сероводород | 5 |
Углекислый газ | 5 |
На выходе из абсорбера контролировали состав газа. Содержание углеводородов и углекислого газа определяли хроматографически; содержание Н2S определяли с помощью газоанализатора «РИКЭН КЭЙКИ» с точностью до 0.5 мг/м3. Объем пропущенного газа 479.6 л, содержание сероводорода в данном объеме 24.0 л (35.1 г).
Состав газа после очистки:
Углеводороды | - 94.74% |
Сероводород | ~0% (1.5 мг/м3 ) |
Углекислый газ | - 5.26% |
ПРИМЕР 2.
Поглотительный раствор готовили в термостатированном (20°С) стеклянном реакторе смешением моноэтаноламина и параформа в соотношении 1 моль: 2 моль (70%-ный водный раствор) в присутствии NaOH (0.01%) и последующим ультразвуковым воздействием в интервале частот 21,5-22 кГц на эту смесь в течении 1 часа. Полученный раствор использовали для очистки углеводородного газа от сероводорода аналогично примеру 1. Остаточное количество сероводорода составляло 1.5 мг/м3.
ПРИМЕР 3.
Средство, полученное согласно примеров 1 и 2, использовали для очистки природного газа. Результаты приведены в таблице.
№ п/п | Состав поглотительного раствора | Объект анализа | Содержание в исходном газе | Содержание в очищенном газе |
1 | МЭА + формальдегид (1:2) | сероводород | 1500 ррм | 1.5 ррм |
метилмеркаптан | 50 ррм | 1.5ррм | ||
этилмеркаптан | 25 ррм | 1.5 ррм | ||
2 | МЭА + параформ (1:2) | сероводород | 1500 ррм | 1.5 ррм |
метилмеркаптан | 50 ррм | 1.5 ррм | ||
этилмеркаптан | 25 ррм | 1.5 ррм |
Условия проведения экспериментов по удалению сероводорода и меркаптанов:
атмосферное давление, комнатная температура (20°С), время обработки 0.2 ч, 70%-ный водный раствор средства.
Как видно из представленных примеров, заявляемый способ приготовления поглотительных растворов обеспечивает высокую абсорбционную емкость (350 мг Н2S на 1 г средства), а также высокую степень очистки газов от H2S и меркаптанов, оставаясь инертным по отношению к углекислому газу.