биопрепарат для очистки почвы и воды от нефти и нефтепродуктов
Классы МПК: | B09C1/10 микробиологическими способами или с использованием ферментов C02F3/34 отличающаяся используемыми микроорганизмами C12N1/26 способы, использующие, или питательные среды, содержащие углеводороды |
Автор(ы): | Сваровская Лидия Ивановна (RU), Писарева Светлана Ивановна (RU), Алтунина Любовь Константиновна (RU) |
Патентообладатель(и): | Институт химии нефти Сибирского отделения Российской Академии наук (RU) |
Приоритеты: |
подача заявки:
2007-08-13 публикация патента:
20.07.2009 |
Изобретение относится к биотехнологии. Биопрепарат включает аэробные нефтеокисляющие микроорганизмы, минеральный питательный субстрат, нормальные парафины C12-C 18 и твердый субстрат-носитель. В качестве аэробных нефтеокисляющих микроорганизмов он содержит ассоциацию представителей 4 родов и 8 видов: Bacillus cereus, В. subtilis, Actinomyces griseus, Act. glaucus, Pseudomonas fluorescens, Ps. mesentericus, Ps. denitrificans, Arthrobacter globiformis, выделенных из нефти Советского месторождения Западной Сибири в концентрации 2,5×10 9 кл/г. В качестве субстрата-носителя содержит сферозолу и дополнительно содержит глюкозу. Изобретение позволяет производить высокоэффективную очистку. 4 табл., 4 ил.
Формула изобретения
Биопрепарат для очистки почвы и воды от нефти и нефтепродуктов, включающий аэробные нефтеокисляющие микроорганизмы, минеральный питательный субстрат, нормальные парафины от С12 до C18 и твердый субстрат-носитель, отличающийся тем, что в качестве аэробных нефтеокисляющих микроорганизмов он содержит ассоциацию представителей 4-х родов и 8 видов: Bacillus cereus, В. subtilis, Actinomyces griseus, Act. glaucus, Pseudomonas fluorescens, Ps. mesentericus, Ps. denitrificans, Arthrobacter globiformis, выделенных из нефти Советского месторождения Западной Сибири в концентрации 2,5·109 кл/г, в качестве субстрата-носителя содержит сферозолу и дополнительно содержит глюкозу при следующем соотношении компонентов, мас.%:
Минеральный питательный субстрат | 0,85-0,95 |
Нормальные парафины C12-C18 | 0,6-0,7 |
Глюкоза | 0,9-1,0 |
Ассоциация аэробных нефтеокисляющих микроорганизмов | 0,06-0,08 |
Сферозола | До 100. |
Описание изобретения к патенту
Изобретение относится к нефтяной промышленности, сельскому хозяйству и экологии и может быть использовано для биологической очистки нефтезагрязненных почв и поверхности водных акваторий.
Нефть и нефтепродукты являются одним из основных источников загрязнения окружающей среды. Во всем мире ведутся интенсивные исследования по изучению влияния нефтезагрязнений на живую природу и поиску способов ускорения деструкции нефти, загрязняющей почву и воду. Установлено, что микроорганизмы катализируют ферментативное разложение нефти и нефтепродуктов, что может быть использовано для разработки биопрепаратов для очистки нефтезагрязненных почв и воды.
Следует отметить, что процесс деструкции углеводородов (УВ) нефти осуществляется микроорганизмами, однако практическая значимость микробной деградации в конечном итоге определяется составом биопрепарата, который обеспечивает жизнеспособность бактерий, их активность, а также технологичность изготовления, хранения, транспортировки и использования.
Известен бактериальный препарат "Путидойл", предназначенный для ускорения разложения нефти [А.С. SU 1076446, кл. С02F 3/34, 1984]. Технология изготовления биопрепарата предусматривает распылительную сушку живой культуры бактерий, что вызывает травмирование микробов и, как следствие, их частичную гибель и потерю необходимой активности. Для восстановления жизнедеятельности бактерий авторы применяют сложный комплекс мер: подогрев большого количества воды (5 м 3) до 18-28°С, перемешивание, аэрирование, и все это в течение длительного времени (16-24 ч), что в полевых условиях выполнить довольно сложно.
Известен бактериальный препарат, состоящий из высокоактивных живых аэробных нефтеокисляющих бактерий (Mycobacterium, Pseudomonas и др.), выращенных на твердых субстратах-носителях с титрами 2,5-7,0·109 клет./г. В качестве субстрата-носителя для иммобилизации микроорганизмов используют гамма-стерильный торф с рН 6,8-7,0 в количестве 40-45 мас.% и воду в количестве 58,95-53,25 мас.%. С целью поддержания нефтеокисляющей активности в процессе хранения в препарат дополнительно вводят питательные субстраты: аммоний щавелевокислый (0,05-1,0 мас.%) и нормальные парафины (1,0-1,5 мас.%). Срок годности биопрепарата - 6 месяцев при температуре 10-15°С с момента его изготовления (патент РФ № 2053205, МПК С02F 3/34). Биопрепарат содержит нефтеокисляющие бактерии, для поддержания жизнедеятельности которых требуется рН среды 6.8-7.0 и большое количество воды (около 60% воды), что снижает его эффективность во времени, увеличивает транспортные расходы, а кроме этого биопрепараты на основе торфа тонут в воде, что также понижает эффективность их действия, особенно при очистке нефтезагрязненной поверхности открытых водоемов. Существенным недостатком известного биопрепарата, значительно ограничивающим область его применения, также является возможность использования его только в узком диапазоне рН среды (рН 6.8-7.0).
Задачей изобретения является создание высокоэффективного сухого бактериального препарата на основе твердого субстрата-носителя, минерального питательного субстрата и протектора, обеспечивающего жизнеспособность сорбированной бактериальной углеводородокисляющей микрофлоры с высокой деструктивной активностью в широком диапазоне рН среды, а также увеличение срока годности и технологичности.
Технический результат достигается созданием биопрепарата для биологической очистки нефтезагрязненных экосистем, компонентами которого являются: сферозола (отходы угольных электростанций) как сорбент-носитель, иммобилизованная на ее поверхности биомасса углеводородокисляющих микроорганизмов, выделенных из нефти и протектор - глюкоза.
Биопрепарат для очистки почвы и воды от нефти и нефтепродуктов, включающий аэробные нефтеокисляющие микроорганизмы, минеральный питательный субстрат, нормальные парафины от С12 до C16 и твердый субстрат-носитель, отличается тем, что в качестве аэробных нефтеокисляющих микроорганизмов он содержит ассоциации Bacillus cereus, В. subtilis; Actinomyces griseus, Act. glaucus; Pseudomonas fluorescens, Ps. mesentericus, Ps. denitrificans; Arthrobacter globiformis, выделенные из нефти Советского месторождения Западной Сибири в концентрации 2.5×l0 9 клeт./г, в качестве субстрата-носителя содержит сферозолу и дополнительно содержит глюкозу при следующем соотношении компонентов, мас.%:
Минеральный питательный субстрат - 0.85-0.95;
Нормальные парафины C12-C16 - 0.6-0.7;
Глюкоза - 0.9-1.0;
Ассоциация аэробных нефтеокисляющих микроорганизмов - 0.06-0.08;
Сферозола - до 100.
В качестве твердого субстрата-носителя используется сферозола (отходы теплоэлектростанций), представляющая собой полые стеклокристаллические алюмосиликатные микросферы в составе летучей золы, образуемой при высокотемпературном сжигании углей на теплоэлекторостанциях. Физические свойства сферозолы приведены в таблице 1.
Совокупность уникальных свойств сферозолы: низкая плотность (меньше воды), малые размеры, сферическая форма, большая удельная поверхность, высокая твердость и температура плавления, химическая инертность, свободная растекаемость (сыпучесть) позволяют получить на ее основе эффективный, легкий, сыпучий биопрепарат, который не тонет в воде и не загрязняет окружающую среду. Попадая в загрязненную почву, сферозола способствует ее структурированию, повышает доступ кислорода для почвенной микрофлоры, что стимулирует ее окислительные процессы.
Минеральный питательный субстрат биопрепарата состоит из компонентов следующего состава, г: Nа2СО 3 - 0.1, MgSO4 - 0.2, MnSO4·5H 2O - 0.02, KН2РO4 - 0.5, Na2 HPO4 - 0.7, CuCl·6H2O - 0.01, NH 4Cl - 2.0, NaCl - 2.0.
В качестве аэробных нефтеокисляющих микроорганизмов биопрепарат содержит ассоциацию углеводородокисляющих микроорганизмов в концентрации не менее
2.5×l09 клeт./г. Ассоциация микроорганизмов выделена из нефти Советского месторождения Западной Сибири и включает представителей 4 родов и 8 видов.
1. Род Bacillus. Виды: B. cereus, B. subtilis - спорообразующие, высокоустойчивые к неблагоприятным условиям бактерии. Аэробы, хемоорганотрофы. Оксидазо- и каталазоположительные. При окислении углеводородов нефти активно образуют биоПАВ и другие продукты метаболизма.
2. Род Actinomyces. Виды: Act. griseus. Act. glaucus - относятся к классу лучистых грибков и имеют характерное строение, спорообразующие, усваивают минеральные соединения, сахара и углеводороды. Каталазоположительные, широко распространены в почве и воде. Утилизируют ароматические и насыщенные углеводороды.
3. Род Pseudomonas. Виды: Ps. fluorescens, Ps. mesentericus, Ps. denitrificans - спор не образуют. Аэробы. Оксидазо- и каталазоположительные, широко распространены в загрязненных почвах, подземных водах и открытых водоемах. Активно утилизируют широкий спектр углеводородов, в том числе ароматические.
4. Род Arthrobacter. Виды: Arth. globiformis - спор не образуют. Аэробы. Оксидазо- и каталазоположительные. Входят в состав физиологической группы углеводородокисляющих микроорганизмов, активно утилизируют ациклические насыщенные и полиароматические углеводороды. Устойчивы к неблагоприятным условиям. Широко распространены в загрязненных почве и воде.
Каждый вид микроорганизмов предпочтительно окисляет углеводороды определенного строения. В ассоциации они наиболее полно способны к деструкции загрязняющих нефтей и нефтепродуктов. Отбор штаммов, входящих в состав ассоциации, проводили на основании их способности к утилизации углеводородов при культивировании в контакте с нефтью в широком диапазоне рН, что выражалось в увеличении динамики роста и активности ферментов, катализирующих окислительные процессы.
Пример 1. Инкубацию культуры Bacillus cereus с определенным исходным числом клеток проводят в колбах Эрленмейера емкостью 500 мл, содержащих 100 мл минеральной среды и нефти (0.5% от объема среды). Вместо нефти можно использовать любой из жидких н-алканов от С12 до C16 . В качестве минеральной среды применяют раствор минерального субстрата следующего состава, г/дм3: Nа2 СО3 - 0.1, MgSO4 - 0.2, MnSO4 ·5H2O - 0.02, KH2PO4 - 0.5, Na2HPO4 - 0.7, CuCl·6H2 O - 0.01, NH4Cl - 2.0, NaCl - 2.0. Поскольку процесс деструкции углеводородов нефти микроорганизмами протекает в присутствии кислорода, колбы с содержимым помещают на баню-качалку для перемешивания. Продолжительность инкубации нефти в контакте с микроорганизмами - 5 суток при постоянной температуре 27°С. Ежедневно проводят посев культуры на агаровые среды для определения динамики численности микроорганизмов. На 5-е сутки культивирования их число увеличилось в 100 раз от 0.035 до 3.5 млн клет./мл, что свидетельствует об использовании углеводородов нефти - единственного углеводного источника питания и энергии. Способность чистых культур к биодеструкции углеводородов оценивают также по увеличению активности каталазы и дегидрогеназы - ферментов оксигеназной группы, характеризующих биологическую активность микроорганизмов в нефтезагрязненной среде. Активность каталазы при этом возрастает от 0.21 до 0.43 мл/мл, дегидрогеназы - от 0.63 до 1.3 мг/мл. Накопленные ферменты становятся стабильными катализаторами окисления загрязняющих углеводородов.
Пример 2. Определение углеводородокисляющих свойств культуры Bacillus subtilis с исходной численностью 0.0328 млн клет./мл проводят по схеме, изложенной выше (пример 1). На 5-е сутки число клеток увеличилось до 4.2 млн клет./мл, активность каталазы при этом возрастает от 0.18 до 0.40 мл/мл, дегидрогеназы - от 0.50 до 1.02 мг/мл, что подтверждает оксигеназную активность культуры Bacillus subtilis.
Пример 3. Углеводородокисляющие свойства культуры Actinomyces griseus определяют по схеме, приведенной в примере 1. Исходная численность микроорганизмов составляет 0.05 млн клет./мл. На 5-е сутки численность увеличилась до 4.14 млн клет./мл, активность каталазы - от 0.23 до 0.40 мл/мл, дегидрогеназы - от 0.6 до 1.36 мг/мл, что свидетельствует об окислительной активности Act. griseus при культивировании в контакте с нефтью.
Пример 4. Углеводородокисляющие свойства культуры клеток Actinomyces glaucus определют по схеме, приведенной в примере 1. Исходная численность микроорганизмов составляет 0.043 млн клет./мл. На 5-е сутки численность увеличилась до 3.28 млн клет./мл, активность каталазы - от 0.20 до 0.38 мл/мл, дегидрогеназы - от 0.55 до 1.09 мг/мл, что подтверждает способность Act. glaucus к утилизации углеводородов нефти.
Пример 5. Углеводородокисляющие свойства культуры клеток Pseudomonas fluorescens определяют по схеме, приведенной в примере 1. Исходная численность микроорганизмов составляет 0.025 млн клет./мл. На 5-е сутки численность увеличилась до 3.14 млн клет./мл, активность каталазы - от 0.18 до 0.42 мл/мл, дегидрогеназы - от 0.6 до 1.36 мг/мл, что свидетельствует об окислительной активности культуры при деструкции нефти.
Пример 6. Углеводородокисляющие свойства культуры клеток Pseudomonas mesentericus определяют по схеме, приведенной в примере 1. Исходная численность микроорганизмов составляет 0.064 млн клет./мл. На 5-е сутки численность увеличилась до 7.19 млн клет./мл, активность каталазы - от 0.29 до 0.63 мл/мл, дегидрогеназы - от 0.6 до 1.36 мг/мл, что свидетельствует о высокой способности культуры Ps. mesentericus к утилизации нефти.
Пример 7. Углеводородокисляющие свойства культуры клеток Pseudomonas denitrificans определяют по схеме, приведенной в примере 1. Исходная численность микроорганизмов составляет 0.052 млн клет./мл. На 5-е сутки численность увеличилась до 5.8 млн клет./мл, активность каталазы - от 0.24 до 0.5 мл/мл, дегидрогеназы - от 0.48 до 1.03 мг/мл, что свидетельствует об окислительной активности культуры Ps. denitrificans.
Пример 8. Углеводородокисляющие свойства культуры клеток Arthrobacter globiformis определяют по схеме, приведенной в примере 1. Исходная численность микроорганизмов составляет 0.0216 млн клет./мл. На 5-е сутки численность увеличилась до 3.79 млн клет./мл, активность каталазы - от 0.18 до 0.4 мл/мл, дегидрогеназы - от 0.6 до 1.5 мг/мл почвы, что свидетельствует о высокой активности ферментов оксигеназной группы культуры Arth. globiformis при деструкции нефти.
Сорбционную активность углеводородокисляющих микроорганизмов на поверхности сферозолы изучали в модельных экспериментах в статических (таблица 2) и динамических (таблица 3) условиях в сравнении с известным сорбентом силикагелем марки L 40/100 Чешского производства.
Из результатов, представленных в таблице 2, следует, что сорбционная активность микроорганизмов на поверхности сферозолы при значениях рН среды 3.4, 7.2 и 9.5 сравнима с известным дорогостоящим сорбентом - силикагелем, а из результатов, представленных в таблице 3, следует, что сорбционная активность микроорганизмов при фильтрации через слой сферозолы также не уступает сорбционной активности известного сорбента.
С целью поддержания жизнеспособности и каталитической активности углеводородокисляющих микроорганизмов, сорбированных на поверхности сферозолы, биопрепарат содержит питательный минеральный субстрат, нормальные парафины и в качестве протектора, обеспечивающего жизнеспособность клеток в сухом биопрепарате, - глюкозу. Биопрепарат готовят следующим образом.
Пример 9. Для накопления биомассы углеводородокисляющих микроорганизмов в ферментер объемом 50 дм3 вносят 25 дм3 водного раствора минерального субстрата, играющего роль питательной среды, следующего состава, г/дм3:
Nа 2СО3 - 0.1
MgSO4 - 0.2
MnSO4·5H2O - 0.02
KH2PO4 - 0.5
Na2HPO4 - 0.7
CuCl·6H 2O - 0.01
NH4Cl - 2.0
NaCl - 2.0.
Среда инокулируется ассоциацией микроорганизмов, выделенных из нефти Советского месторождения Западной Сибири и включающих представителей 4 родов, 8 видов. Исходная концентрация микроорганизмов в ферментере 8×106 клет./мл. Затем в ферментер вносят 15 кг сферозолы и добавляют 150 г глюкозы и 100 г гексадекана (nC16) или другого углеводорода (н-алкана) как источника энергии и дополнительного углеродного субстрата для микробных клеток. Их размножение в ферментере и сорбция на поверхности сферозолы происходит при температуре 25-27°С в течение 5 суток при постоянном перемешивании, что обеспечивает дополнительный приток кислорода. Затем сферозолу с иммобилизованной микрофлорой отделяют от жидкой фазы, высушивают на воздухе и пакетируют в бумажные мешки по 5 кг. Концентрация клеток в 1 г готового биопрепарата 2.5×109, влажность препарата 3-5 мас.%, срок годности 1 год.
Полученный препарат был испытан в модельных экспериментах по очистке нефтезагрязненных воды и почвы.
Концентрация нефти в почве составила 5 мас.%, в воде - 3 мас.%. Препарат вносили в концентрации 1.0 г/кг. На протяжении эксперимента (30 суток) определяли динамику численности микроорганизмов, максимум которых в нефтезагрязненной почве на 10-12 сутки составляет 7.15×109 клет./г, в воде - 12.3×109 клет./см3 (табл.4). Динамика роста согласуется с деструктивной активностью микроорганизмов. В конце эксперимента остаточная нефть методом экстракции хлороформом была извлечена из почвы и воды. Биодеградация нефти в почве за 30 суток составила 75% (37.5 г), в воде - 90% (27 г). Результаты лабораторных экспериментов на модели воды и почвы, загрязненных нефтью, представлены в таблице 4.
Изменения молекулярно-массового распределения ациклических насыщенных углеводородов (н-алканов) нефти, биодеградированной в условиях водной фазы и почвы, представлены в сравнении с исходной нефтью (фиг.1, 2). Пробы анализировали методом газожидкостной хроматографии. Коэффициент биодеградации н-алканов загрязняющей нефти, определяемый по формуле (Pr+Ph)/(nC 17+nC18), для почвы равен 6.0, для воды - 6.5, для исходного загрязнения этот показатель не превышает 0.6.
Результаты модельных экспериментов однозначно показывают, что применение предлагаемого биопрепарата на 30-е сутки существенно снижает уровень нефтезагрязнения воды и почвы на 90 и 75% соответственно.
Таблица 1 | |
Физические свойства сферозолы | |
Форма | сферическая |
Цвет | серо-белый |
Истинная плотность | 0.6-0.8 г/см3 |
Размер частиц | 10-150 микрон |
Насыпная плотность | 0.40 г/см3 |
Удельная поверхность | 7.0 м2/г |
Температура плавления | 1300°С |
рН в воде | 6-8 |
Поверхностная влажность | 0,3% мас. |
Таблица 3 | ||||
Сорбция микробных клеток рода Micrococcus в динамических условиях фильтрации через колонки, заполненные сорбентами при рН среды 7,0 | ||||
Изучаемые тесты | Исходное число микробов | |||
300 млн клет. | 180 млн клет. | |||
Сорбенты | ||||
Сферозола | Силикагель | Сферозола | Силикагель | |
Высота сорбента в колонке, см | 15.5 | 9.5 | 20.5 | 20 |
Вес сорбента, г | 2.5 | 2.5 | 2.5 | 2.5 |
Объем микробной взвеси для фильтрации, мл | 10 | 10 | 10 | 10 |
Скорость фильтрации, мл/мин | 0.13 | 0.15 | 0.12 | 0.14 |
Общее число клеток в микробной взвеси после фильтр., млн клет. | 5.3 | 4.83 | 5.9 | 0.28 |
Общее число сорбированных клеток, млн клет. | 294.7 | 295.17 | 174.1 | 179.72 |
Сорбция клеток на 1 г сорбента, млн клет./г | 117.88 | 118.07 | 69.64 | 71.89 |
Класс B09C1/10 микробиологическими способами или с использованием ферментов
Класс C02F3/34 отличающаяся используемыми микроорганизмами
Класс C12N1/26 способы, использующие, или питательные среды, содержащие углеводороды