концентрат ингибиторов коррозии
Классы МПК: | C09K5/00 Материалы для теплопередачи, теплообмена или хранения тепла, например для рефрижераторов; материалы для производства тепла или холода с помощью химических реакций иначе, чем путем сжигания C23F11/12 кислородсодержащие соединения |
Патентообладатель(и): | Белокурова Ирина Николаевна (RU) |
Приоритеты: |
подача заявки:
2008-03-21 публикация патента:
27.07.2009 |
Изобретение относится к концентрату ингибиторов коррозии, содержащему, в мас.%: 0,02-70,0 смесь, по крайней мере, одной монокарбоновой кислоты, такой как ундекановая, додекановая, 2-этилгексановая, октановая, и, по крайней мере, одной дикарбоновой кислоты, такой, как 1,6-гександикарбоновая, себациновая, 1,4-бутандикарбоновая или их солей щелочных металлов в любом сочетании и в любом соотношении; 0,001-5,0 толилтриазол, или бензотриазол, или их смесь в равных соотношениях; 0,01-3,0 соль щелочного металла или триэтаноламина 2,2'-[[(метил-1н-бензотриазол-1-ил)-метил]имино]бисэтанола; 0,01-5,0 6,6',6''-(1,3,5-триазин-2,4,6-трилтриимино)тригексановую кислоту; 0,01-1,5 пеногаситель; 10,0-15,0 воду; остальное - гликоли, такие как этиленгликоль, пропиленгликоль. Технический результат - улучшение эксплуатационных свойств охлаждающих жидкостей, обеспечение длительной антикоррозионной защиты металлических поверхностей в охлаждающих системах. 1 з.п. ф-лы, 6 табл.
Формула изобретения
1. Концентрат ингибиторов коррозии для изготовления охлаждающих жидкостей и теплоносителей на основе гликоля, включающий монокарбоновую и дикарбоновую кислоты, толилтриазол или бензотриазол или их смесь в равных соотношениях, воду, отличающийся тем, что в качестве антикоррозионных присадок содержит, по крайней мере, одну монокарбоновую кислоту такую, как ундекановая, додекановая, 2-этилгексановая, октановая, и, по крайней мере, одну дикарбоновую кислоту такую, как 1,6-гександикарбоновая, себациновая, 1,4-бутандикарбоновая, или их соли щелочных металлов, и дополнительно содержит соль щелочного металла или триэтаноламина 2,2'-[[(метил-1н-бензотриазол-1-ил)-метил]имино]бисэтанола, 6,6',6''-(1,3,5-триазин-2,4,6-трилтриимино)тригексановую кислоту, пеногаситель при следующем соотношении компонентов, мас.%:
Смесь моно- и дикарбоновых кислот | |
или их солей щелочных металлов | |
в любом сочетании в любом соотношении | 0,02-70,0 |
Толилтриазол или бензотриазол | |
или их смесь в равных соотношениях | 0,001-5,0 |
Соль щелочного металла или триэтаноламина | |
2,2'-[[(метил-1н-бензотриазол-1-ил)-метил]имино] | |
бисэтанола | 0,01-3,0 |
6,6',6''-(1,3,5-триазин-2,4,6-трилтриимино) | |
тригексановая кислота | 0,01-5,0 |
Пеногаситель | 0,01-1,5 |
Вода | 10,0-15,0 |
Гликоли (этиленгликоль, пропиленгликоль) | Остальное |
2. Концентрат ингибиторов коррозии по п.1, отличающийся тем, что он в качестве антикоррозионной присадки, содержит смесь моно- и дикарбоновых кислот, мас.%: 0,01-10,0 ундекановой кислоты или ее натриевой или калиевой соли, или 0,01-10,0 додекановой кислоты или ее натриевой или калиевой соли, или 0,01-30,0 2-этилгексановой кислоты или ее натриевой или калиевой соли, или 0,01-10,0 октановой кислоты или ее натриевой или калиевой соли, или 0,005-10,0 1,6-гександикарбоновой кислоты или ее натриевой или калиевой соли, или 0,005-10,0 себациновой кислоты или ее натриевой или калиевой соли, или 0,01-10,0 1,4-бутандикарбоновой кислоты или ее натриевой или калиевой соли, или их смесь в любом сочетании и в любом соотношении.
Описание изобретения к патенту
Изобретение относится к области химической технологии, в частности к концентратам антифризов, для изготовления охлаждающих жидкостей, применяемых в системах охлаждения двигателей внутреннего сгорания автомобилей, а также в качестве теплоносителя, предназначенного для использования в системах отопления и кондиционирования зданий.
Известны ингибиторы коррозии, представляющие собой концентрат антифризов (РФ патент № 2046815, МПК 6, С09,К 5/00, 1995; РФ патент № 2050397, МПК 6, С09,К 5/00, 1995; РФ патент № 2095388, МПК 6, С09,К 5/00, 1997), обеспечивающие защиту черных и цветных металлов, но имеющие в своем составе тетраборат натрия (буру), наличие которого может ухудшать защиту алюминия и его сплавов в условиях нагревания.
Высококонцентрированный суперконцентрат для получения антифризов и теплоносителей (РФ патент № 2196797, МПК 7, С09,К 5/00, 2001), на основе которого изготавливают антифризы с улучшенными противокоррозионными свойствами, как и в предыдущих изобретениях, имеет существенный недостаток в том, что в его составе присутствует триэтаноламин. Предполагается, что подобные соединения могут расщепляться при высоких температурах и приводить к образованию высокомолекулярных канцерогенных соединений, таких как нитрозоамины, представляющих токсикологическую опасность.
Подобные недостатки исключают составы ингибиторов коррозии для антифризов на основе гликолей (РФ патент № 2104330, МПК 6, С09,К 5/00, 1999; РФ патент № 2143499 МПК 6, С09,К 5/00, 1999; РФ патент № 2125074, МПК 6, С09,К 5/00, 1999). Однако присутствие фосфатов калия в составах композиций этих изобретений снижает стабильность антифриза при его эксплуатации, причиной этому является образование осадков в присутствии жесткой воды, мешающих циркуляции охлаждающей жидкости и снижающих тем самым теплообмен.
Известен бесфосфатный ингибитор коррозии (US 5422026 МКИ 6, С09,К 5/00, 1995), в составе которого присутствуют бура, нитраты и силикаты, наличие которых характеризуется выпадением нерастворимых силикатных модификаций при высоких температурах, что свидетельствует о нестабильности антифриза в целом.
Известен водный ингибитор коррозии (US патент № 6228283, МПК 7, С09,К 5/00, 2001), композиция которого представлена стабилизированным силикатом, однако присутствие в ней фосфатов щелочного металла, нитрата и нитрита щелочных металлов не позволяет признать подобные антифризы соответствующими современным требованиям, предъявляемым к антифризам.
Известна охлаждающая жидкость на полигликолевой основе, содержащая в качестве антикоррозионных присадок моно- и дикарбоновую кислоты, фосфат щелочного металла, тетраборат натрия, и/или высокомодульное жидкое стекло, и/или трилон Б, и/или декстрин (РФ патент № 2213119, С09К 5/00, 2003). Присутствие подобных компонентов снижает стабильность охлаждающей жидкости в целом. Известно, что наличие буры способствует увеличению коррозии алюминия, фосфат щелочного металла не обеспечивает долговременной защитной пленки на поверхности металла, а включение в состав высокомодульного жидкого стекла (силиката натрия) способствует снижению стабильности антифриза при хранении и образованию гелеобразного осадка в условиях эксплуатации при высоких температурах.
Согласно современным требованиям автопроизводителей ограничивается присутствие силикатов, фосфатов до 0,001 мас.%, буры - 0,0005 мас.% (Спецификация инженерных материалов Ford WSS-M97 В44 D), по техническим требованиям Автоваза ТТМ 1.97.1172-2004 полностью исключается наличие нитрата и нитрита.
Дальнейшее развитие получили формулы антифризов с повышенными эксплуатационными характеристиками благодаря использованию подобранной комбинации моно- и дикарбоновых кислот и ряда других ингибиторов коррозии. В составах новых современных антифризов полностью исключается наличие силикатов, фосфатов, нитратов и нитритов, аминов, боратов при сохранении высокой коррозионной защиты металлов, особенно алюминия, стали, чугуна, припоя, меди и латуни. Известны композиции концентратов антифризов, обладающих подобными свойствами (РФ патент № 2263131, С09К 5/20, 2004; РФ патент № 2290425, С09К 5/08, 2005).
Наиболее близким по составу, свойствам и назначению к заявляемому составу концентратов антифризов является органическая композиция (РФ патент 2249634, С09К 5/20, 2005) следующего состава, мас.%:
Ненасыщенная монокарбоновая | |
кислота С10-18 (ундециленовая) | 5-15 |
Смесь насыщенной монокарбоновой | |
кислоты С5-16 (н-гексановая, | |
н-октановая, нонановая) и | |
насыщенной дикарбоновой кислоты C4-12 | |
(субериновая, азелаиновая, себациновая) | 40-70 |
Трикарбоксильное производное | |
1,3,5-триазина формулы |
Производные азола из группы имидазолов, | |
бензимидазолов, триазолов или бензотриазолов, | |
тетрагидробензотриазола, тиазолов, бензотиазолов | |
и их солей со щелочными металлами | 1-5 |
Жидкий спирт (метанол, этанол, 2-пропанол, | |
глицерин, этиленгликоль, диэтиленгликоль, | |
пропиленгликоль, метил-, этил-, пропил-, | |
и бутиловые эфиры этиленгликоля) | Остальное |
Задачей данного изобретения является создание композиции концентрата ингибиторов коррозии для получения антифриза с высокими защитными свойствами на основе малотоксичного сырья, не содержащего силикаты, бораты, фосфаты, амины, нитраты, нитриты с длительной антикоррозионной защитой металлических поверхностей.
Поставленная цель достигается тем, что концентрат ингибиторов коррозии на основе гликоля, содержащий комбинацию моно- и дикарбоновых кислот, толилтриазол или бензотриазол или их смесь в равных соотношениях дополнительно содержит, по крайней мере, одну монокарбоновую кислоту такую, как ундекановая, додекановая, 2-этилгексановая, октановая, и, по крайней мере, одну дикарбоновую кислоту, такую, как 1,6-гександикарбоновая, себациновая, 1,4-бутандикарбоновая, или их соли щелочных металлов, и дополнительно содержит соль щелочного металла или триэтаноламина 2,2'-[[(метил-1н-бензотриазол-1-ил)-метил]имино]бисэтанола-, 6,6',6''-(1,3,5-триазин-2,4,6-трилтриимино)тригексановую кислоту, пеногаситель, а в качестве гликоля - моноэтиленгликоль или пропиленгликоль при следующем соотношении компонентов, мас.%:
Смесь моно- и дикарбоновых кислот | |
или их солей щелочных металлов | 0,02-70,0 |
Толилтриазол или бензотриазол | |
или их смесь в равных соотношениях | 0,001-5,0 |
Соль щелочного металла или триэтаноламина | |
2,2'-[[(метил-1н-бензотриазол-1-ил)-метил]имино] | |
бисэтанола | 0,01-3,0 |
6,6',6''-(1,3,5-триазин-2,4,6-трилтриимино)- | |
тригексановая кислота | 0,01-5,0 |
Пеногаситель Dow Corning 544 | 0,01-1,5 |
Вода | 10,0-15,0 |
Гликоли (этиленгликоль, пропиленгликоль) | Остальное |
При этом в качестве указанной антикоррозионной композиции моно- и дикарбоновых кислот или их солей может быть использована их смесь в следующем соотношении компонентов, мас.%: 0,01-10,0 ундекановой кислоты или ее натриевой или калиевой соли, или 0,01-10,0 додекановой кислоты или ее натриевой или калиевой соли, или 0,01-30,0 2-этилгексановой кислоты или ее натриевой или калиевой соли, или 0,01-10,0 октановой кислоты или ее натриевой или калиевой соли, или 0,005-10,0 1,6-гександикарбоновой кислоты или ее натриевой или калиевой соли, или 0,005-10,0 себациновой кислоты или ее натриевой или калиевой соли, 0,01-10,0 1,4-бутандикарбоновой кислоты, или ее натриевой или калиевой соли, или их смесь в любом сочетании и в любом соотношении.
Пеногаситель Dow Corning 544 представляет собой диспергируемый в воде жидкий силиконовый пеногаситель, содержащий гидрофобный диоксид кремния, силиконовые ПАВ и полидиметилсилоксан. Сопоставительный анализ с прототипом показывает, что данный состав концентрата ингибиторов коррозии отличается от известного введением новых компонентов: антикоррозионной композиции, содержащей моно- и дикарбоновые кислоты свободные или в виде солей щелочных металлов, такие как ундекановая, додекановая, 2-этилгексановая, октановая, 1,6-гександикарбоновая, себациновая, 1,4-бутандикарбоновая в любом их сочетании и в любом соотношении, соль щелочного металла или триэтаноламина 2,2'-[[(метил-1н-бензотриазол-1-ил)-метил]имино]бисэтанола, 6,6',6''-(1,3,5-триазин-2,4,6-трилтриимино)тригексановую кислоту, пеногаситель Dow Coming 544.
Таким образом, заявленное техническое решение соответствует критерию новизны.
Применение в данном составе новых компонентов в сочетании с известными и найденное соотношение всех ингредиентов обеспечивает такие свойства, которые проявляются только в указанном техническом решении, а именно: высокие антикоррозионные свойства антифриза или теплоносителя, полученных на его основе, относительно конструкционных материалов (медь, припой, латунь, сталь, чугун, алюминий), включая защиту от кавитации и эрозии (см. таблицы 2 и 3); стабильность при хранении (см. таблицу 4); устойчивость антикоррозионной защиты при определении скорости коррозии в жестких условиях методом поляризационного сопротивления (см. таблицу 5); совместимость с большинством торговых марок антифризов и тосолов (см. таблицу 6).
Предлагаемая композиция предотвращает минеральные отложения в закрытых водных системах, не допускает вспенивания, устойчива к жесткой воде.
При изучении других технических решений в данной области технологии признаки, отличающие заявленное изобретение от прототипа, не были выявлены, что обеспечивает соответствие данного технического решения критерию существенные отличия.
Концентрат данного состава готовят последовательным смешиванием компонентов.
Пример 1. В емкость с мешалкой помещают 10,0 г воды, 0,01 г натриевой соли 2,2'-[[(метил-1н-бензотриазол-1-ил)-метил]имино]бисэтанола, 0,01 г 6,6',6''-(1,3,5-триазин-2,4,6-трилтриимино)тригексановой кислоты, 69,96 г этиленгликоля, 0,001 г бензотриазола, 10,0 г натриевой соли ундекановой кислоты, 0,01 г натриевой соли октановой кислоты, 10,0 г себациновой кислоты и 0,01 г пеногасителя. Смесь перемешивают при температуре окружающей среды в течение 1 ч до полного растворения компонентов.
Пример 2. В емкость с мешалкой помещают 9,5 г воды, 3,0 г триэтаноламиновой соли 2,2'-[[(метил-1н-бензотриазол-1-ил)-метил]имино]бисэтанола, 5,0 г 6,6',6''-(1,3,5-триазин-2,4,6-трилтриимино)тригексановой кислоты, 67,88 г этиленгликоля, 1,2 г толилтриазола, 2,7 г калиевой соли ундекановой кислоты, 10,0 г калиевой соли додекановой кислоты, 0,7 г калиевой соли 1,6-гександикарбоновой кислоты, 0,005 г калиевой соли себациновой кислоты, 0,01 г 1,4-бутандикарбоновой кислоты, 0,01 г пеногасителя. Смесь перемешивают при температуре окружающей среды в течение 1 ч до полного растворения компонентов
Примеры 3 и 4 осуществляют аналогично Примеру 2.
Пример 5. В емкость с мешалкой помещают 12,0 г воды, 2,0 г калиевой соли 2,2'-[[(метил-1н-бензотриазол-1-ил)-метил]имино]бисэтанола, 0,5 г 6,6',6''-(1,3,5-триазин-2,4,6-трилтриимино)тригексановой кислоты, 48,19 г этиленгликоля, 5,0 г толилтриазола, 2,0 г ундекановой кислоты, 0,01 г додекановой кислоты, 30,0 г натриевой соли 2-этилгексановой кислоты, 0,01 г натриевой соли октановой кислоты, 0,27 г натриевой соли 1,4-бутандикарбоновой кислоты, 0,02 г пеногасителя. Смесь перемешивают, как указано в Примере 1
Примеры 6-12 приготавливают аналогично Примерам 1 и 2.
Пример 13. В емкость с мешалкой помещают 10,0 г воды, 0,5 г натриевой соли 2,2'-[[(метил-1н-бензотриазол-1-ил)-метил]имино]бисэтанола, 1,8 г 6,6',6''-(1,3,5-триазин-2,4,6-трилтриимино)тригексановой кислоты, 87,46 г пропиленгликоля, 0,2 г бензотриазола, 0,005 г натриевой соли ундекановой кислоты, 0,002 г натриевой соли октановой кислоты, 0,005 г натриевой соли додекановой кислоты, 0,003 г натриевой соли 2-этилгексановой кислоты, 0,001 г 1,6-гександикарбоновой кислоты, 0,001 г себациновой кислоты, 0,001 г 1,4-бутандикарбоновой кислоты, 0,02 г пеногасителя. Смесь перемешивают, как указано в примере 1.
Пример 14 приготавливают аналогично Примеру 13.
Составы концентрата антифриза по примерам 1-16 и прототипу приведены в таблице 1.
Из составов концентрата ингибиторов коррозии, указанных в таблице 1, готовят образцы антифризов для испытания на коррозионное воздействие на металлы путем его разбавления этиленгликолем или пропиленгликолем в соотношении 1:6.
Образцы антифризов подвергают коррозионным испытаниям в виде их 50%-ных растворов по ГОСТ 28084-90 в течение 336 ч при 88°±1С с аэрацией воздухом.
Сравнительные результаты коррозионных испытаний представлены в таблице 2. Основные физико-химические свойства концентрата ингибиторов коррозии и антифриза, полученного на его основе, представлены в таблице 3.
Определение стабильности при хранении при повышенной температуре охлаждающих жидкостей, полученных на основе концентрата антифриза, проводят по методике Технических требований АвтоВаза (ТТМ 1.97.1172-2004) и Спецификации инженерных материалов Ford (WSS-M97 B44-D). Концентрат охлаждающей жидкости в количестве 60 мл помещают в термостат в герметично закрытом сосуде и нагревают до 65±2°С в течение 14 дней. Контролируют наличие студенистого осадка на 2, 7, 10, 14 день. При появлении осадка испытания прекращают. При отсутствии осадка 30 мл испытуемой жидкости растворяют в таком же количестве синтезированной жесткой воды, содержащей 275 мг/дм3 кальция хлористого, 148 мг/дм3 натрия сернокислого, 165 мг/дм3 натрия хлористого, 138 мг/дм3 натрия двууглекислого. Полученный раствор вновь помещают в термостат при температуре 65±2°С на следующие 14 дней, контролируют наличие студенистого осадка на 2, 7, 10 и 14 день. При наличии осадка жидкость считается не выдержавшей испытания.
Результаты проведенных испытаний по стабильности при высокой температуре представлены в таблице 4.
Оценку эффективности защитного действия ингибиторов коррозии в настоящем изобретении проводили по измерению общей скорости коррозии металлов в течение длительного периода времени с помощью электрохимического метода поляризационного сопротивления и гравиметрии. Коррозионные испытания проводились на коррозиметре «Эксперт-004» при 20 и 88°С на различных марках металлов. Антифриз разбавляли в объемном отношении 1:1 «жесткой» водой, содержащей 148 мг/л сернокислого безводного натрия, 165 мг/л хлористого натрия, 138 мг/л двууглекислого натрия и 275 мг/л хлористого кальция. Образцы металлов после соответствующей обработки сушили и взвешивали. Продукты коррозии, образовавшиеся на поверхности припоя и алюминия, были удалены с учетом поправки на травление металла, скорости коррозии алюминия и припоя рассчитывали по убыли массы пластинки. Скорости коррозии меди рассчитывали по привесу на образование оксида меди Сu2O и далее пересчитаны на медь. Скорости коррозии латуни, стали и чугуна рассчитывали по привесу пластинки. Проведенные испытания на коррозиметре показывают, что зависимости скорости коррозии от времени носят экспоненциальный характер, что позволяет получать прогнозы работы материалов в заданной среде на длительные сроки эксплуатации. Результаты проведенных испытаний в сравнении с коммерческим тосолом представлены в таблице 5.
Совместимость антифриза, полученного на основе концентрата, с другими коммерческими антифризами и тосолами проверяли по методике Спецификации инженерных материалов Ford WSS-M97B44-D (п.3.4.2). 50 об.% раствор антифриза по заявленному составу, приготовленный путем разбавления коррозионной водой по ASTM D 1384 и 50 об.% раствор испытуемого концентрата коммерческого тосола или антифриза, разбавленного такой же коррозионной водой, смешивали в объемном соотношении 1:1. Оставляли стоять 24-48 часов при 20±2°С при полном отсутствии света. Через заданное время проверяли наличие осадка и тестировали на коррозию с соблюдением потери веса. Результаты испытаний представлены в таблице 6.
Кроме того, приготовленные на основе концентрата ингибиторов коррозии образцы антифризов испытывали на стойкость в жесткой воде по ГОСТ 28084-89. Критерием устойчивости антифриза к жесткой воде является отсутствие осадка и расслоения жидкой фазы. Определение резерва щелочности проводят по методике ASTM D 1121. Водородный показатель (рН) измеряют в 30%-ных водных растворах образцов концентрата по методике ASTM D 1287.
Как видно из таблиц 1 и 2, составы 1-3, 5, обладают высокими антикоррозионными свойствами. Уменьшение концентрации натриевой соли 2,2'-[[(метил-1н-бензотриазол-1-ил)-метил]имино]бисэтанола ниже 0,01 мас.% вызывает усиление коррозии стали (пример 4), а увеличение ее выше 3,0 мас.% не приводит к повышению положительного эффекта (пример 8).
Уменьшение концентрации бензотриазола или толилтриазола ниже 0,001 мас.%, т.е. практически их исключение, вызывает коррозию меди и латуни (пример 9), а увеличение ее выше 5,0 мас.% не приводит к положительному эффекту (пример 10).
Уменьшение концентрации 6,6',6''-(1,3,5-триазин-2,4,6-трилтриимино) тригексановой кислоты ниже 0,01 мас.%, практически ее исключение, приводит к снижению коррозионной стойкости цветных металлов (пример 11), увеличение его содержания выше 5,0 мас.% резко усиливает коррозию всех металлов (пример 12).
Уменьшение суммарной концентрации смеси натриевых или калиевых солей ундекановой, додекановой, 2-этилгексановой, октановой, 1,6-гександикарбоновой, себациновой, 1,4-бутандикарбоновой кислот ниже нижнего предела вызывает усиление коррозии меди, припоя, стали, чугуна, алюминия (пример 13). Увеличение суммарной концентрации смеси этих компонентов выше верхнего предела приводит к образованию нерастворимого осадка в виде суспензии, что резко снижает защиту от коррозии всех металлов (пример 14).
В отсутствии пеногасителя (пример 15) при приготовлении концентрата наблюдается ценообразование, при введении пеногасителя более чем 1,5 мас.% наблюдается образование опалесценции раствора, однако снижения коррозионной защиты не проявляется (пример 16).
Разбавление концентрата ингибиторов коррозии этиленгликолем или пропиленгликолем или водно-гликолевой смесью позволяет получить антифриз и охлаждающие жидкости с заданной температурой замерзания от минус 10°С до минус 65°С.
Таким образом, применение в составе концентрата антифриза согласно изобретению новых компонентов в сочетании с известными и найденное соотношение ингредиентов и синергетической комбинации моно- и дикарбоновых кислот позволяет получать антифризы и теплоносители, обеспечивающие высокую и долговременную коррозионную защиту по отношению к конструкционным материалам двигателей внутреннего сгорания или теплообменников (меди, припою, латуни, стали, чугуну, алюминию), защиту от кавитации и эрозии без использования нитритов, устойчивость к жесткой воде, стабильность при хранении при высоких температурах, совместимость с большинством коммерческих антифризов и тосолов.
Таблица 2 Результаты коррозионных испытаний антифризов, полученных на основе концентрата ингибиторов коррозии | ||||||
Состав | Материал | |||||
медь | припой | латунь | сталь | чугун | алюминий | |
Потеря массы, г/м2 сутки | ||||||
1 | 0,01 | 0,07 | 0,01 | 0,01 | 0,01 | 0,02 |
2 | 0,01 | 0,05 | 0,01 | 0,01 | 0,02 | 0,02 |
3 | 0,02 | 0,11 | 0,01 | 0,01 | 0,01 | 0,03 |
4 | 0,04 | 0,09 | 0,03 | 0,20 | 0,04 | 0,03 |
5 | 0,01 | 0,05 | 0,03 | 0,03 | 0,01 | 0,01 |
6 | 0,02 | 0,07 | 0,02 | 0,01 | 0,02 | 0,02 |
7 | 0,01 | 0,08 | 0,03 | 0,02 | 0,02 | 0,01 |
8 | 0,04 | 0,08 | 0,04 | 0,04 | 0,03 | 0,02 |
9 | 0,25 | 0,10 | 0,18 | 0,03 | 0,01 | 0,02 |
10 | 0,03 | 0,07 | 0,05 | 0,01 | 0,02 | 0,01 |
11 | 0,18 | 0,28 | 0,19 | 0,04 | 0,03 | 0,01 |
12 | 0,27 | 0,23 | 0,15 | 0,23 | 0,22 | 0,24 |
13 | 0,18 | 0,25 | 0,09 | 0,17 | 0,21 | 0,29 |
14 | 0,20 | 0,26 | 0,18 | 0,20 | 0,20 | 0,24 |
15 | 0,05 | 0,07 | 0,04 | 0.10 | 0,03 | 0,03 |
16 | 0,08 | 0,10 | 0,06 | 0,02 | 0,04 | 0,05 |
17 Прототип, мг/пластинку | -0,4 | - | -0,5 | -0,2 | -0,5 | -0,4 |
ГОСТ 28084-89, г/м 2 сутки | 0,1 | 0,2 | 0,1 | 0,1 | 0,1 | 0,1 |
Таблица 3 Физико-химические свойства концентрата ингибиторов коррозии и антифриза, полученного на его основе Испытания проводились по ГОСТ 28084-89 | |||
№ п/п | Наименование показателей | Концентрат антифриза | Антифриз |
1 | Внешний вид | Прозрачная бесцветная однородная жидкость без механических примесей | Прозрачная окрашенная жидкость без механических примесей |
2 | Плотность при 20°С, г/см3 | 1,085-1,110 | 1,112-1,114 |
3 | Водородный показатель (рН) при 20°С | 9,0-9,2 | 8,5-9,0 |
при разбавлении дистиллированной водой в объемном соотношении 1:2 | при разбавлении дистиллированной водой в объемном соотношении 1:1 | ||
4 | Резерв щелочности, см 3 | - | 5,0-6,5 |
5 | Устойчивость к жесткой воде | - | Отсутствие расслоения и осадка |
Таблица 4 Результаты по определению стабильности охлаждающих жидкостей, полученных на основе концентрата антифриза, при нагревании Испытания проводились по Спецификации инженерных материалов Ford WSS-M97 В44 D (п 3.4.3.) и Техническим требованиям АвтоВаза ТТМ 1.97.1172-2004 (п 4.1) | ||||||||
Состав коцентрата антифриза | Вид охлаждающей жидкости после нагревания при 65±2°С | |||||||
без разбавления | после разбавления | |||||||
на 2 день | на 7 день | на 10 день | на 14 день | на 2 день | на 7 день | на 10 день | на 14 день | |
1 | осадка нет | осадка нет | ||||||
2 | осадка нет | осадка нет | ||||||
3 | осадка нет | осадка нет | ||||||
5 | осадка нет | осадка нет | ||||||
Состав 1 с добавлением 0,33 мас.% силиката натрия, 2,1 мас.% буры, 0,26 мас.% нитрита натрия | осадка нет | осадка нет | наличие гелеобразного осадка | - | - | - | - | - |
Таблица 5 Результаты коррозионных испытаний антифриза, полученного на основе концентрата ингибиторов коррозии, в сравнении с коммерческим тосолом методами поляризационного сопротивления и гравиметрии | ||||||
Материал | Потеря массы Kгр m, г/м2.сут | Потеря массы Kгрп, мкм/год | Скорость коррозии Km, г/м2.сут | Скорость коррозии Кп, мкм/год | ||
Гравиметрия | Антифриз по составу | Коммерческий тосол | ГОСТ 28084-89 | |||
Сталь 20 | 0,001* | 2,4 | 0,1 | 3,07 | 25,0 | 4,7 |
Чугун Сч20 | 0,001* | 2,25 | 0,072 | 3,2 | 70,0 | 4,7 |
Алюминий | 0,075 | 10,5 | 0,065 | 5,8 | 32,8 | 13,5 |
АЛ9 | ||||||
Медь M1 | 0,037* | 0,36 | 0,027 | 0,11 | 1,6 | 4,1 |
Припой | 0,035 | 1,82 | 0,21 | 5,04 | 7,4 | 7,4 |
ПОС40 | ||||||
Латунь Л63 | 0,032* | 1,54 | 0,08 | 3,58 | 4,5 | 4,4 |
показатели рассчитаны по прибыли массы образцов;
для пересчета показаний скорости коррозии универсального коррозиметра из мкм/год в мм/год необходимо показатель умножить на коэффициент 0,001.
Класс C09K5/00 Материалы для теплопередачи, теплообмена или хранения тепла, например для рефрижераторов; материалы для производства тепла или холода с помощью химических реакций иначе, чем путем сжигания
Класс C23F11/12 кислородсодержащие соединения