способ переработки растворов, содержащих никель и примеси металлов
Классы МПК: | C01G53/00 Соединения никеля C01F11/46 сульфаты |
Автор(ы): | Орлов Станислав Львович (RU), Плышевский Юрий Сергеевич (RU), Басков Дмитрий Борисович (RU) |
Патентообладатель(и): | Басков Дмитрий Борисович (RU) |
Приоритеты: |
подача заявки:
2007-05-02 публикация патента:
10.08.2009 |
Изобретение может быть использовано при переработке отработанных никельсодержащих кислых растворов, образующихся при электролитическом рафинировании меди. Способ переработки водных растворов, содержащих сульфат никеля, серную кислоту и примеси, включает трехстадийную нейтрализацию растворов соединениями кальция, такими как известковое молоко и мел. Первую стадию нейтрализации ведут при рН 1,8-2,0, вторую стадию нейтрализации ведут при рН 5-6, а третью - при рН более 8,5. Изобретение позволяет упростить получение товарных продуктов из отработанных никельсодержащих кислых растворов. 2 з.п. ф-лы, 1 ил., 3 табл.
Формула изобретения
1. Способ переработки водных растворов, содержащих сульфат никеля, серную кислоту и примеси, включающий трехстадийную нейтрализацию растворов соединениями кальция, такими, как известковое молоко и мел, отличающийся тем, что первую стадию нейтрализации ведут при рН 1,8-2,0, вторую стадию нейтрализации ведут при рН 5-6, а третью - при рН более 8,5.
2. Способ по п.1, отличающийся тем, что окружная скорость вращения мешалки при нейтрализации составляет не менее 4 м/с.
3. Способ по п.2, отличающийся тем, что фильтрат после третьей стадии осаждения используют в качестве оборотной воды в процессе рафинирования меди.
Описание изобретения к патенту
Предлагаемое изобретение относится к области цветной металлургии, более конкретно к способу переработки отработанных никельсодержащих кислых растворов медьэлектролитных заводов.
Известно, что при электролитическом рафинировании меди образуются отработанные растворы, содержащие сульфат никеля, серную кислоту, небольшое количество сульфата меди, железа и микропримеси свинца, цинка, кадмия, висмута, сурьмы и олова. Типичный раствор содержит около 200 г/л серной кислоты, 14-15 г/л Ni, около 3 г/л цинка, менее 2 г/л железа и микропримеси иных металлов. Растворы перерабатываются с получением никелевого купороса путем многостадийной выпарки, отделения промежуточных осадков, перекристаллизации, очистки растворов от примесей и возврата сконцентрированной до содержания 1200 г/л серной кислоты на электролиз меди (Позин М.Е. Технология минеральных солей. T.1, M.: Химия, 1974, с. 735-736). Этот процесс является энергоемким и сложным, и на некоторых предприятиях заменен обработкой отработанных растворов известковым молоком с осаждением смеси гипса и гидроксида никеля (до 4% по Ni), использующейся в металлургических производствах. Известна разновидность этого метода (патент US 4009101), применяющаяся при никелировании, при которой проводят нейтрализацию части раствора щелочью, образовавшийся при этом гидроксид никеля добавляют в оставшуюся часть раствора для его нейтрализации. Метод позволяет повысить концентрацию раствора и таким образом несколько уменьшить затраты на выпарку. Однако в данном случае он не является удовлетворительным решением проблемы из-за необходимости разделения сульфатов в ходе многостадийной выпарки.
Также хорошо известно получение гидроксида никеля из растворов, содержащих сульфат никеля, путем введения щелочи, например патенты № РФ 2208585, РФ 2191160, РФ 2177447, DE 19846093, EP 0908258, US 5498403. Однако из-за примесей, содержащихся в исходном растворе, получение готового к использованию продукта этим методом осложнено, а получение полупродуктов в связи с использованием щелочи - экономически невыгодно.
Разновидностью этого метода, приводящей к получению товарного продукта, является двустадийное осаждение щелочью согласно патенту JP 59056590 с осаждением на первой стадии примесей, а на второй - гидроксида никеля. Для уменьшения расхода щелочи применяется отделение части кислоты диализом, а для лучшей очистки от примесей - добавление перекиси водорода.
Известен способ двустадийной нейтрализации кислых растворов сульфата никеля гидроксидом магния (патент US 4006215), с получением гидроксида никеля и иных гидроксидов, применяющийся к растворам, содержащим никель, кобальт, железо, а именно растворам сернокислотного вскрытия латеритовых руд. Использование гидроксида магния (с последующей его регенерацией путем осаждения после добавления извести при повышенной температуре и разделения фракций гипса и гидроксида магния) усложняет процесс, а состав растворов вскрытия латеритовых руд существенно отличается от состава растворов отработанных никельсодержащих кислых растворов медьэлектролитных заводов. В описании патента упоминается также факт подачи заявки на аналогичное изобретение с использованием гидроксида кальция.
Наиболее близким к заявляемому способу является метод трехстадийного осаждения из раствора сульфата никеля примесей железа и цинка (патент JP 2003095660) путем добавления извести при одновременной подаче воздуха в качестве окислителя, при соответствующих рН стадий: первой 3.0-4.0, второй 5.5-5.85 и третьей 5.9-6.1. Очищенный раствор сульфата никеля затем перерабатывают обычными методами.
Техническая задача переработки состоит в получении товарного продукта или продуктов, содержащих никель, из отработанных никельсодержащих кислых растворов, например растворов медьэлектролитных заводов, наиболее экономичным и технологичным способом.
Техническая задача решается путем трехстадийной нейтрализации водных растворов, содержащих сульфат никеля, серную кислоту и примеси, соединениями кальция, такими как известковое молоко и мел, отличающейся тем, что первую стадию нейтрализации ведут при рН 1,8-2,0, вторую стадию нейтрализации ведут при рН 5-6, а третью - при рН более 8,5. Окружная скорость вращения мешалки при нейтрализации составляет не менее 4 м/с. Фильтрат после третьей стадии осаждения используют в качестве оборотной воды в процессе рафинирования меди.
Преимуществом способа по сравнению с наиболее близкими аналогами JP 59056590 и US 4006215 является использование более дешевого реагента (известковое молоко) и более простой технологической схемы (простое трехстадийное осаждение, без применения окислителей и регенерации реагентов), что уменьшает как капитальные, так и эксплуатационные затраты. Кроме того, метод, по существу, является безотходным, поскольку как основной продукт, так и побочные, могут быть использованы в промышленности, а фильтрат после последней стадии нейтрализации может быть использован в качестве оборотной воды в производственном цикле медьэлектролитных заводов.
Первую стадию нейтрализации ведут при рН 1,8÷2,0. При рН более 2 начинается осаждение соединений металлов, загрязняющих гипс. При рН менее 1,8 осаждение происходит недостаточно полно. На этой стадии нейтрализации вместо известкового молока можно использовать мел.
Вторую стадию нейтрализации проводят с получением осадка гипса, содержащего 0,4-1% никеля и примеси - основной сульфат меди, гидроксид цинка, гидроксид железа. Этот осадок затем используют в металлургической промышленности или же перерабатывают с получением концентратов цветных металлов и, опять-таки, чистого гипса. Вторую стадию нейтрализации ведут при рН 5÷6. При рН менее 5 часть примесей остается в фильтрате и загрязняет богатый никелевый концентрат. При рН более 6 больший процент никеля переходит в осадок, уменьшая содержание никеля в концентрате.
Третью стадию нейтрализации ведут при рН не менее 8,5, предпочтительно до рН 9,5. При этом происходит почти полное осаждение никеля в виде гидроксида никеля, совместно с гипсом. Полученный концентрат содержит не менее 15% никеля и может быть использован в металлургии. При рН менее 8,5 не достигается достаточно полного осаждения никеля, и он теряется с раствором. При рН более 9,5 дальнейшего увеличения извлечения никеля не наблюдается, а расход известкового молока возрастает.
Таким образом, при предложенной трехстадийной нейтрализации помимо решения основной задачи - извлечения никеля достигаются два сопутствующих преимущества: получение на первой стадии нейтрализации чистого гипса для использования в производстве стройматериалов и получение концентрата цветных металлов, пригодного для их извлечения, на второй стадии нейтрализации.
Окружная скорость мешалки (рамной или импеллерной) для обеспечения эффективного перемешивания должна составлять не менее 4 м/с, предпочтительно не менее 6 м/с. При окружной скорости менее 4 м/с ухудшаются характеристики процесса осаждения. При скорости более 6 м/с дальнейшего улучшения их не наблюдается.
Каждая стадия нейтрализации сопровождается фильтрацией с отделением осадка. Фильтрат третьей стадии нейтрализации возвращают в медьэлектролитное производство в качестве оборотного раствора, чем достигается безотходность технологии. Из экономических соображений процесс ведется при нормальных условиях (атмосферном давлении и температуре, повышающейся в ходе нейтрализации за счет того, что реакция нейтрализации является экзотермической).
Схема переработки растворов приведена на чертеже.
Осуществление способа может быть продемонстрировано нижеследующими примерами.
Пример 1а и 1б.
Берут две пробы по 600 мл электролита следующего состава (пробы а) и б) в табл.1):
Таблица 1 | ||
Вещество | Проба а) | Проба б) |
Серная кислота, г/л | 216 | 218 |
Сu, г/л | 0,51 | 0,50 |
Ре, г/л | 1,51 | 1,52 |
Ni, г/л | 14,5 | 13,8 |
Zn, г/л | 3,04 | 3,10 |
As, мг/л | 10,13 | 10,11 |
Bi, мг/л | 0,66 | 0,70 |
Pb, мг/л | 5,58 | 5,47 |
Sn, мг/л | 117,3 | 112,6 |
В варианте 1а, после первой нейтрализации известковым молоком с достижением рН 1,9 и фильтрации, получают чистый двухводный гипс.
В варианте 1б, после первой нейтрализации порошкообразным мелом с достижением рН 1,9 и фильтрации, получают чистый двухводный гипс.
После второй стадии нейтрализации известковым молоком до рН 5,5 и фильтрации получают бедный по никелю гипсовый осадок для вариантов 1а и 1б.
После третьей стадии нейтрализации известковым молоком до рН 9,5 и фильтрации получают богатый по никелю гипсовый осадок для вариантов 1а и 1б.
Результаты процесса по массам и составам осадком приводятся ниже, в таблице 2.
Таблица 2 | |||
Стадии процесса | Содержание и массы веществ | Пример 1а | Пример 16 |
Первая нейтрализация | Процент примесей в двухводном гипсе | 0,101 | 0,104 |
Вторая нейтрализация | Масса осадка, г | 5,52 | 5,60 |
Содержание Ni, % | 4,36 | 4,28 | |
Содержание Cu, % | 1,84 | 1,85 | |
Содержание Zn, % | 10.95 | 11,02 | |
Содержание Fe, % | 5,45 | 5,40 | |
Третья нейтрализация | Масса осадка, г | 52,6 | 49,8 |
Содержание Ni, % | 16,0 | 15,9 | |
Содержание Cu, % | 0,014 | 0,013 | |
Содержание Zn, % | 0,17 | 0,16 |
Таким образом, в богатый по никелю осадок перешло свыше 95%, а в бедный - менее 5% никеля для обоих случаев.
Фильтрат после третьей стадии осаждения в примере 1а содержал Ni 5,11 мг/ л, Fe менее 0,0025 мг/л, Cu 0,095 мг/л, Zn 0,008 мг/л, что позволяет использовать подобный раствор в качестве оборотной воды в медьэлектролитном производстве.
Примеры 2-14.
Исходный раствор был обработан способом, аналогичным описанному в примере 1а, при различных рН осаждения. Ниже в таблице приведены условия и основные результаты трехстадийного осаждения (таблица 3). Из данных примеров видно, что оптимальными рН осаждения стадий 1-3 являются соответственно 1,8-2,0, 5-6, 8,5-9,5. Приведенные примеры демонстрируют возможность получения товарного продукта (никелевого концентрата с содержанием никеля свыше 15%) трехстадийной нейтрализацией водных растворов, содержащих сульфат никеля, серную кислоту и примеси, с помощью известкового молока или, на первой стадии нейтрализации, мела.
Таблица 3 | |||||||||
№ п/п | Наименование осадка | Окружная скорость вращения мешалки, м/с | рН по стадиям | Извлечение, % | |||||
1 | 2 | 3 | Ni | Cu | Fe | Zn | |||
3 | Гипсовый осадок | 1,7 | 5,5 | 9,5 | 0,01 | 0,001 | 0,01 | 0,01 | |
2 | 1,8 | 5,5 | 9,5 | 0,01 | 0,001 | 0,01 | 0,01 | ||
1 | 4 | 1,9 | 5,5 | 9,5 | 0,01 | 0,001 | 0,03 | 0,04 | |
4 | 2,0 | 5,5 | 9,5 | 0,01 | 0,001 | 0,1 | 0,1 | ||
5 | 2,2 | 5,5 | 9,5 | 0,01 | 0,001 | 60 | 30 | ||
6 | Осадок гидроксидов цветных металлов | 1,9 | 4,8 | 9,0 | 5 | 60 | 100 | 30 | |
7 | 1,9 | 5,0 | 9,0 | 5 | 74 | 100 | 46 | ||
3 | 6 | 1,9 | 5,5 | 9,0 | 5 | 90 | 100 | 70 | |
8 | 1,9 | 6,0 | 9,0 | 5 | 96 | 100 | 92 | ||
9 | 1,9 | 6,2 | 9,0 | 15 | 100 | 100 | 100 | ||
10 | Богатый по никелю гипсовый осадок | 1,9 | 5,5 | 8,2 | 90 | 4 | 0,001 | 8 | |
11 | 1,9 | 5,5 | 8,5 | 95 | 4 | 0,001 | 8 | ||
3 | 6 | 1,9 | 5,5 | 9,0 | 95 | 4 | 0,001 | 8 | |
12 | 1,9 | 5,5 | 9,5 | 95 | 4 | 0,001 | 8 | ||
13 | 1,9 | 5,5 | 9,8 | 95 | 4 | 0,001 | 8 |
В ходе процесса происходит практически полное осаждение никеля в виде гидроксида никеля. Осадок второй стадии осаждения, содержащий 0,5-5,0% никеля, значительные количества цинка и меди, также может быть использован в металлургии или для извлечения из него цветных металлов. Чистый гипс, полученный на первой стадии осаждения трехстадийного метода, может быть использован, например, в производстве стройматериалов. Фильтрат после третьей стадии осаждения, как видно из примера 1а, может быть использован в качестве оборотной воды.
Класс C01G53/00 Соединения никеля