твердотельная матрица вакуумных фотоэлектрических преобразователей электромагнитного излучения
Классы МПК: | H01J31/50 электронно-оптические преобразователи или видеоусилители, те приборы с оптическим, рентгеновским и тому подобным входом и оптическим выходом |
Автор(ы): | Скрылёв Александр Сергеевич (RU), Чернокожин Владимир Викторович (RU), Костюков Евгений Вильевич (RU), Константинов Петр Борисович (RU), Концевой Юлий Абрамович (RU), Завадский Юрий Иванович (RU), Бабаев Владимир Георгиевич (RU), Новиков Николай Дмитриевич (RU), Гусева Мальвина Борисовна (RU), Гордиенко Юрий Николаевич (RU), Грузевич Юрий Кириллович (RU), Балясный Лев Михайлович (RU) |
Патентообладатель(и): | Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Пульсар" (RU) |
Приоритеты: |
подача заявки:
2007-09-20 публикация патента:
27.08.2009 |
Изобретение относится к области производства вакуумных фотоэлектрических преобразователей (ФЭП) электромагнитного излучения, а именно - к области производства твердотельных матриц для ФЭП, и может быть использовано при изготовлении указанных матриц. Твердотельная матрица содержит совокупность ячеек, поверхность которых покрыта резистивным слоем, причем резистивный слой выполнен из пленки линейно-цепочечного углерода, поперечное удельное сопротивление которой меньше продольного удельного сопротивления. Технический результат заключается в устранении зарядки поверхности матрицы потоком электронов без потери разрешающей способности. 2 ил.
Формула изобретения
Твердотельная матрица вакуумных фотоэлектрических преобразователей электромагнитного излучения, содержащая совокупность ячеек, поверхность которых покрыта резистивным слоем, отличающаяся тем, что резистивный слой выполнен из пленки линейно-цепочечного углерода, поперечное удельное сопротивление которой меньше продольного удельного сопротивления.
Описание изобретения к патенту
Изобретение относится к конструкции твердотельных матриц вакуумных фотоэлектрических преобразователей (ФЭП) электромагнитного излучения на основе внутреннего фотоэффекта (передающие телевизионные трубки) и на основе внешнего фотоэффекта (электронно-оптические преобразователи (ЭОП)) и может быть использовано при изготовлении указанных матриц.
Известны твердотельные матрицы передающих телевизионных трубок, так называемые «мишени» из кремния, содержащие совокупность фотодиодов, либо фототранзисторов, либо p-i-n диодов и предназначенные для передающих телевизионных трубок, поверхность которых, сканируемая электронными лучом, покрыта резистивным слоем селенида сурьмы (см., например, патент Англии N1.286.231, кл. H1D/HOI 29/44, приоритет 7/1 - 69 г., фирма "Bkyo Shibaura Electronic Co").
Резистивный слой предназначен для уменьшения зарядки поверхности мишени электронами сканирующего пучка.
Недостаток резистивного слоя из селенида сурьмы заключается в том, что весьма проблематично управлять величиной его удельного сопротивления в процессе нанесения. Другой недостаток - частичное испарение слоя в процессе технологических прогревов матрицы.
В качестве прототипа предлагаемой конструкции выбрана конструкция твердотельной матрицы мозаичной мишени телевизионной передающей трубки, в которой резистивный слой, предназначенный для "стекания" электронов, выполнен из соединений кадмия (см. патент Англии N1.291.031 от 5.01.71 г. кл. H1D (HOI 29/44)). Использование в качестве материала для резистивного слоя соединений кадмия улучшает стойкость резистивного слоя к технологическим прогревам, проблема же по управлению величиной удельного сопротивления слоя остается. Дело в том, что резистивный слой должен, с одной стороны, обеспечивать «стекание» электронов за время кадра, а, с другой стороны, быть достаточно высокоомным, чтобы не закоротить соседние элементы матрицы. Расчет, подтвержденный многолетней практикой изготовления мишеней передающих телевизионных трубок, показывает что для реально используемых времен кадра, близких к телевизионному стандарту - 25 кадров в секунду - и шаге матрицы порядка 10 мкм, величина удельного сопротивления составляет (1-5)·10 8 Ом·см. При этом толщина слоя порядка 0,1 мкм.
При таких характеристиках резистивного слоя возникает дополнительное поперечное (ортогонально поверхности) падение напряжения на элементе мишени порядка единиц и даже десятков вольт, ухудшающее параметры тока сигнала. Полностью устранить зарядку поверхности мишени при столь высокоомном слое не удается, а снизить величину сопротивления нельзя из-за опасности закорачивания соседних элементов и потери разрешающей способности.
Задачей предлагаемого изобретения является создание конструкций твердотельной матрицы для вакуумных ФЭП, в которых резистивный слой практически полностью устраняет зарядку поверхности матрицы электронным лучом при исключении закорачивания соседних элементов и потери разрешающей способности.
Поставленная задача решается таким образом, что резистивный слой выполнен из пленки линейно-цепочечного углерода, у которой поперечное удельное сопротивление пленки меньше продольного удельного сопротивления.
Технический результат, получаемый при реализации предложенной конструкции, состоит в создании твердотельной матрицы для вакуумных ФЭП, в которой реализована возможность устранения зарядки поверхности матрицы потоком электронов без потери разрешающей способности.
Новизна предложенной конструкции заключается в том, что в отличие от известных конструкций матриц в ней используется слой из линейно-цепочного углерода, у которого поперечное удельное сопротивление меньше продольного.
Рассмотрим пример реализации изобретения.
На фиг.1 приведена схема конструкции предложенной матрицы. Здесь 1 - подложка матрицы, 2 - система ячеек матрицы, 3 - разделительный диэлектрический слой, 4 - резистивный слой из линейно-цепочечного углерода.
На фиг.2 показан элемент матрицы, содержащий две соседние ячейки в сочетании с эквивалентной схемой сопротивлений резистивного слоя. Здесь Rпопер.- поперечное сопротивление участка резистивного слоя над ячейкой, а Rпрод. - продольное сопротивление участка резистивного слоя между ячейками.
Резистивное покрытие функционирует следующим образом. Заряд падающих на поверхность резистивного слоя электронов свободно проходит через малое сопротивление Rпопер., в то же время благодаря большому сопротивлению Rпрод.. соседние ячейки практически изолируются друг от друга.
В качестве макета предложенной конструкции матрицы использовалась ПЗС матрица с межстрочным переносом для ЭОП с размером ячейки 10×10 мкм. В качестве пленки для резистивного слоя использовалась пленка линейно-цепочечного углерода толщиной порядка 0,1 мкм с величиной удельного продольного сопротивления 3·10 8 Ом·см и величиной удельного поперечного сопротивления 2·103 Ом·см, то есть отношение продольного сопротивления к поперечному сопротивлению составило 1,5·10 5. Величина продольного сопротивления 3·108 Ом·см, как известно, обеспечивает отсутствие паразитной связи между ячейками, малое поперечное сопротивление пленки, на 5 порядков меньше продольного, обеспечило полное «стекание» заряда электронов в ячейки.
Класс H01J31/50 электронно-оптические преобразователи или видеоусилители, те приборы с оптическим, рентгеновским и тому подобным входом и оптическим выходом