способ цифровой компьютерной оценки рентгенограмм в диагностике остеопороза

Классы МПК:A61B6/00 Приборы для радиодиагностики, например комбинированные с оборудованием для радиотерапии
Автор(ы):, , , ,
Патентообладатель(и):Федеральное государственное учреждение "Российский научно-исследовательский институт травматологии и ортопедии им. Р.Р. Вредена Федерального агентства по высокотехнологичной медицинской помощи" (ФГУ "РНИИТО им. Р.Р. Вредена Росмедтехнологий") (RU)
Приоритеты:
подача заявки:
2007-06-20
публикация патента:

Изобретение относится к области медицины, а именно травматологии, ортопедии и ревматологии. Для оценки минеральной плотности костной ткани бедренной кости оценивают рентгенологические снимки. Вычисляют кортикальный индекс проксимального отдела бедренной кости на уровне исследования. Уровень исследования определяют на расстоянии от малого вертела, равном расстоянию от верхушки большого вертела до середины малого вертела. Способ прост в исполнении, не требует дорогостоящего оборудования. 7 ил.

способ цифровой компьютерной оценки рентгенограмм в диагностике   остеопороза, патент № 2366363 способ цифровой компьютерной оценки рентгенограмм в диагностике   остеопороза, патент № 2366363 способ цифровой компьютерной оценки рентгенограмм в диагностике   остеопороза, патент № 2366363 способ цифровой компьютерной оценки рентгенограмм в диагностике   остеопороза, патент № 2366363 способ цифровой компьютерной оценки рентгенограмм в диагностике   остеопороза, патент № 2366363 способ цифровой компьютерной оценки рентгенограмм в диагностике   остеопороза, патент № 2366363 способ цифровой компьютерной оценки рентгенограмм в диагностике   остеопороза, патент № 2366363

Формула изобретения

Способ оценки минеральной плотности костной ткани бедренной кости, включающий оценку рентгенологических снимков и вычисление кортикального индекса проксимального отдела бедренной кости на уровне исследования, который определяют по расстоянию от малого вертела, отличающийся тем, что уровень исследования определяют по расстоянию, равному расстоянию от верхушки большого вертела до середины малого вертела.

Описание изобретения к патенту

Изобретение относится к области медицины, а именно травматологии, ортопедии и ревматологии, и может быть использовано для определения и мониторинга за состоянием минеральной плотности костной ткани.

В связи с увеличением частоты переломов на фоне остеопороза возникает необходимость в диагностике остеопороза непосредственно при поступлении больного в стационар. От состояния костной ткани в значительной мере зависит выбор метода лечения. В клинике не всегда имеется возможность оценить степень остеопоротических изменений общепринятыми инструментальными методами. Денситометрия является объективным исследованием, измеряющим непосредственно рентгеновскую плотность кости, исключающим действие «человеческого фактора», ее данные удобно фиксировать и оценивать, однако ее проведение требует специальной аппаратуры, которой оснащены не все медицинские учреждения [1].

Наиболее простым из известных методов оценки степени остеопороза является рентгенометрический метод определения кортикального индекса [3, 4], (Фиг.1) при помощи миллиметровой ленты или при исследовании на компьютерном томографе, однако метод определения кортикального индекса миллиметровой лентой не вполне соответствуют современным требованиям и не всегда дает точные результаты, а на компьютерном томографе есть возможность точного измерения, но отсутствует программное обеспечение для автоматического расчета кортикального индекса [5], и компьютерным томографом оснащены не все медицинские учреждения [1]. Поэтому разработан способ цифровой компьютерной обработки рентгенологических данных оригинальной программой, оценивающей кортикальный индекс.

Прототипом изобретения послужил способ цифровой обработки рентгенограмм позвоночника [2]. Однако данное исследование производится только для рентгенограмм позвоночника.

Разработанный способ позволяет оценить результаты рентгеновского изображения, проксимального отдела бедренной кости, пястных костей и отдельных позвонков, получить точные результаты с выполнением автоматического расчета, сохранением в базе данных с возможностью последующего анализа.

Результат изобретения достигается тем, что сканируют или фотографируют рентгенограмму, полученное изображение заносят в базу данных, и после определения и замера на уровне исследования производится автоматический расчет кортикального индекса, данные в программу заносятся при помощи цифрового фотоаппарата или планшетного сканера.

На чертежах изображены:

Фигура 1: Схема определения кортикального индекса по формуле (KMI=Е/F), где 1 = расстояние от середины малого вертела до уровня исследования, и оно равно 7,5-10 см [6, 7].

2=E, 3=F.

Фигура 2: Рентгенограмма проксимального отдела правой бедренной кости, где линия 1 проводится от вершины большого вертела до середины малого вертела для определения уровня исследования.

Фигура 3: Увеличенное изображение уровня исследования, где проводятся линия 2 от наружных стенок кортикалов и линия 3 от внутренних стенок кортикалов, для последующего автоматического расчета.

Фигуры 4: Данные компьютерной томограммы, показывающие расстояние от верхушки большого вертела до середины малого вертела, где 1 = 8 см.

Фигуры 5: Данные компьютерной томограммы, показывающие расстояние от верхушки большого вертела до середины малого вертела, где 1 = 7,6 см.

Фигуры 6: Данные компьютерной томограммы, показывающие расстояние от верхушки большого вертела до середины малого вертела, где 1 = 8,5 см.

Фигуры 7: Данные компьютерной томограммы, показывающие расстояние от верхушки большого вертела до середины малого вертела, где 1 = 7,7 см.

Способ осуществляется следующим образом.

Рентгенограмма сканируется или фотографируется с целью получения цифрового изображения. В базу данных заносятся данные пациента и дата исследования, затем добавляется изображение. Следующим этапом на отображаемом изображении проксимального отдела бедренной кости проводится линия от верхушки большого вертела до середины малого для получения уровня исследования (это расстояние в среднем равно 8 см (Фиг 4, 5, 6, 7)). Уровень исследования может быть увеличен в 8 раз для более точного анализа. Затем проводится две линии: первая от наружных стенок кортикалов на уровне исследования, вторая от внутренних стенок кортикалов на уровне исследования. После проведения второй линии производится автоматическое вычисление и данные заносятся в базу данных (Фиг.2).

Данная методика проста в исполнении, не требует приобретения дополнительного дорогостоящего оборудования, в связи с чем возможно ее широкое применение в медицинской практике.

В предлагаемом способе необходимо наличие рентгеновского аппарата, с помощью которого выполняется снимок исследуемой области. Данный снимок должен быть отсканирован или сфотографирован цифровым фотоаппаратом. После чего изображение загружается в персональный компьютер и оценивается с помощью предложенного способа.

Литература

1. Рекомендации рабочей группы воз по исследованию и лечению больных с остеопорозом // Остеопороз и остеопатии. № 4, 1999, стр.2-6.

2. U.Massafra, F.Vacca, E.Mascheroni, M.Diaco, A.Capuano, A.Migliore. Use Of Morphoexpress In The Clinical Practice On Bone Metabolism: Experience From 250 Cases // Clinical Cases In Mineral And Bone Metabolism, Vol.111, September-December, 2006, N.3, P 372.

3. Y.Yeung., K.Y. Chiu, W.P.Yau, W.M.Tang and T.P.Ng Assessment of the Proximal Femoral Morphology Using Plain Radiograph - Can it Predict the Bom - Quality? // The Journal of Arthroplasty, Vol.21, Number, 4, 2006.

4. Spotorno I., Romagnoli S. Indications (or the CLS stem. In: Spotorno I., Romagnoli S. editors. The CLS uncemented total hip replacement system. Berne, Switzerland: Protek; 1991. P 4.

5. Руководство к программному обеспечению E-Film для компьютерного томографа.

Класс A61B6/00 Приборы для радиодиагностики, например комбинированные с оборудованием для радиотерапии

молекулярная визуализация -  патент 2529804 (27.09.2014)
система получения изображений с кардио-и/или дыхательной синхронизацией и способ 2-мерной визуализации в реальном времени с дополнением виртуальными анатомическими структурами во время процедур интервенционной абляции или установки кардиостимулятора -  патент 2529481 (27.09.2014)
способ и устройство для формирования изображений в большом поле зрения, и детектирования и компенсации артефактов движения -  патент 2529478 (27.09.2014)
формирование модели усовершенствованного изображения -  патент 2529381 (27.09.2014)
способ лечения деформаций проксимального отдела бедра -  патент 2528964 (20.09.2014)
способ контроля риска развития осложнений кариеса зубов, пульпита и периодонтита -  патент 2528935 (20.09.2014)
способ неинвазивной диагностики непереносимости лактозы -  патент 2527694 (10.09.2014)
устройство для воздействия инфракрасным излучением на коллагеновый слой кожи человека с визуализацией процесса -  патент 2527318 (27.08.2014)
способ сопроводительного лечения при эндопротезировании крупных суставов -  патент 2527159 (27.08.2014)
способ калибровки на основе алгоритма нахождения центра вращения для коррекции кольцевых артефактов в неидеальных изоцентрических трехмерных вращательных рентгеновских сканирующих системах с использованием калибровочного фантома -  патент 2526877 (27.08.2014)
Наверх