способ обработки стальных изделий в газообразной среде

Классы МПК:C23C8/34 с введением более чем одного элемента в несколько стадий
C23C8/26 стальных поверхностей
Автор(ы):, ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования Московский автомобильно-дорожный институт (государственный технический университет) (RU)
Приоритеты:
подача заявки:
2007-12-17
публикация патента:

Изобретение относится к области металлургии, а именно к способам упрочнения металлов в газообразных средах, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин. Проводят нагрев изделий до температуры насыщения 450-780°С в атмосфере аммиака с последующей выдержкой в насыщающей газообразной среде. В качестве насыщающей среды при выдержке используют воздух и аммиак, которые подают раздельно. Выдержку изделий осуществляют попеременно в атмосфере воздуха, а затем в атмосфере аммиака с формированием на поверхности изделий многослойной структуры, состоящей из чередующихся между собой слоев из оксидных и нитридных фаз железа и соответствующих легирующих элементов. Получают изделия с оптимальным сочетанием повышенной твердости и износостойкости, что позволяет увеличить ресурс работы изделий, работающих в тяжелых нагруженных условиях. 1 табл., 2 ил.

способ обработки стальных изделий в газообразной среде, патент № 2367716 способ обработки стальных изделий в газообразной среде, патент № 2367716

Формула изобретения

Способ обработки стальных изделий в газообразной среде, включающий нагрев изделий до температуры насыщения 450-780°С в атмосфере аммиака с последующей выдержкой в насыщающей газообразной среде, отличающийся тем, что в качестве насыщающей среды при выдержке используют воздух и аммиак, которые подают раздельно, а выдержку изделий осуществляют попеременно в атмосфере воздуха, а затем в атмосфере аммиака с формированием в результате на поверхности изделий многослойной структуры, состоящей из чередующихся между собой слоев из оксидных и нитридных фаз железа и соответствующих легирующих элементов.

Описание изобретения к патенту

Изобретение относится к области металлургии, а именно к способам упрочнения металлов в газообразных средах, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, работающих в тяжелых нагруженных условиях.

Известен способ химико-термической обработки стальных изделий, включающий их нагрев в диссоциированном аммиаке до 450способ обработки стальных изделий в газообразной среде, патент № 2367716 780°С и двухстадийную выдержку в газообразной среде при этой температуре. Причем на первой стадии в печь подают аммиак, а на второй - смесь аммиака с 5-50% воздуха (см. Заявка Великобритании № 1522446, МКИ С23С 11/16, опубл. 23.08.1978).

Недостатками известного способа является недостаточная твердость и износостойкость упрочненного слоя, обусловленная ухудшением диффузии азота в процессе насыщения через поверхностный окисный слой.

Известен наиболее близкий к заявленному и принятый в качестве прототипа способ азотирования стальных изделий в газообразных средах, включающий нагрев изделий в диссоциированном аммиаке до 450способ обработки стальных изделий в газообразной среде, патент № 2367716 780°С и двухстадийную выдержку, при этом на первой стадии выдержки используют смесь аммиака и паров органической углеродоводородокислородосодержащей жидкости, в частности этанол, ацетон, ацетальдегид, безводную уксусную кислоту, а на второй стадии - воздух (см. SU 1420992, МПК С23С 8/56, 07.06.1993). Этот способ позволяет повысить износостойкость, коррозионную стойкость диффузионного слоя и интенсифицировать процесс насыщения.

Недостатком известного способа является образование на поверхности карбонитридной зоны, снижающей твердость, в результате формируется слой с неоптимальным сочетанием твердости и износостойкости, приводящий к снижению ресурса работы, а также недостаточная технологичность, связанная с применением многокомпонентных органических паров.

Технической задачей, решаемой настоящим изобретением, является получение на поверхности стальных изделий упрочненной многослойной структуры, состоящей из нитридных и оксидных фаз металлов с оптимальным сочетанием повышенной твердости и износостойкости, позволяющих увеличить ресурс работы стальных изделий, работающих в тяжелых нагруженных условиях

Поставленная техническая задача решается тем, что в известном способе обработки стальных изделий в газообразной среде, включающем нагрев изделий до температуры насыщения 450-780°С в атмосфере аммиака с последующей выдержкой в насыщающей газообразной среде, согласно изобретению в качестве насыщающей среды при выдержке используют воздух и аммиак, которые подают раздельно, а выдержку изделий осуществляют попеременно в атмосфере воздуха, а затем в атмосфере аммиака с формированием в результате на поверхности изделий многослойной структуры, состоящей из чередующихся между собой слоев из оксидных и нитридных фаз железа и соответствующих легирующих элементов.

Решение поставленной технической задачи достигается тем, что процесс выдержки азотируемых изделий при заданной температуре насыщения в интервале 450способ обработки стальных изделий в газообразной среде, патент № 2367716 780°С проводят в две стадии, которые осуществляют циклами. В каждом из проводимых циклов в результате диффузионных процессов образуются чередующиеся между собой слои из нитридной и оксидной фаз металлов. При этом такое чередование твердых и более мягких фаз, находящихся в когерентной связи между собой и зоной внутреннего азотирования, обладающих к тому же когезионной прочностью сцепления, и позволяет получить на поверхности стальных изделий упрочненную многослойную структуру с оптимальным сочетанием повышенной твердости и износостойкости, причем все изменения в результате действия нагрузок в любом из слоев покрытия будут иметь локальный характер и не смогут влиять на прочностные характеристики всего слоя, что в результате способствует увеличению ресурса работы азотируемых стальных изделий.

Изобретение поясняется чертежами, где на фиг.1 приведена циклограмма, поясняющая порядок подачи газовых компонентов насыщающей газовой среды при азотировании в процессе выдержки, а на фиг.2 изображена микроструктура диффузионного слоя стального изделия, прошедшего циклическую раздельную выдержку.

Способ азотирования стальных изделий в газообразных средах заключается в нагреве изделий до заданной температуры насыщения, которую назначают в интервале 450-780°С в зависимости от марки стали. Нагрев ведут в газообразной атмосфере, как правило не содержащей активного азота. Далее проводят последующую раздельную выдержку в насыщающей атмосфере и в атмосфере воздуха. Согласно изобретению последующую после нагрева выдержку осуществляют циклами. При этом в каждом цикле проводят раздельную выдержку первоначально в атмосфере воздуха, а затем в атмосфере аммиака. В результате такой цикличности процесса выдержки формируют на поверхности изделий высокопрочную многослойную структуру, состоящую из чередующихся между собой слоев из нитридных и оксидных фаз металлов, причем в высоколегированных сталях наряду с нитридами железа присутствуют оксидные и нитридные фазы соответствующих легирующих элементов.

Способ азотирования реализуется следующим образом.

Стальные изделия после загрузки в печь нагревают в газообразной атмосфере, например в атмосфере аммиака, до заданной температуры насыщения в интервале 450-780°С. Далее при этой температуре осуществляют выдержку изделий циклами путем попеременной сегрегационной, т.е. раздельной, подачи в печь воздуха и аммиака в цикле. Таким образом, в каждом цикле процесса первоначально изделия подвергают выдержке в воздушной атмосфере, а затем в атмосфере аммиака (см. фиг.1). Результатом обработки является формирование на поверхности стальных изделий упрочненной многослойной структуры, состоящей из чередующихся между собой нитридных и оксидных фаз металлов. По окончании процесса выдержки охлаждение изделий проводят в атмосфере аммиака вместе с печью до комнатной температуры. Время выдержки в атмосферах воздуха и аммиака в цикле зависит от марки стали. Состав атмосферы на входе и температура в печи устанавливаются с помощью специальной программы и поддерживаются автоматически. Толщина упрочненного слоя зависит от состава атмосферы в процессе выдержки и интенсивно растет за счет присутствия кислорода в ней. Общее время подачи газов зависит от объема печи и должно соответствовать 3-х кратному объему аммиака.

Упрочненная многослойная структура их химических соединений на поверхности изделий, состоящая из нитридных и оксидных фаз металлов, формируется в зависимости от азотного потенциала газообразной среды печи и температуры. Чередование твердых и более мягких фаз (см. фиг.2), находящихся в когерентной связи между собой и зоной внутреннего азотирования и обладающих когезионной прочностью сцепления, позволяют получить на поверхности стальных изделий упрочненную структуру с оптимальным сочетанием повышенной твердости и износостойкости, позволяющую увеличить ресурс работы, так как все изменения в любом из слоев локализуются и не влияют на прочностные свойства характеристики всего слоя, что способствует увеличению ресурса работы покрытия. Строение зоны химических соединений определяется химическими реакциями, протекающими на поверхности металла, зависящими от концентрации кислорода и степени диссоциации аммиака. Присутствие кислорода воздуха приводит к значительному увеличению количества активных центров, через которые происходит проникновение азота в металл. Так с появление оксидов потенциал образования твердой фазы способ обработки стальных изделий в газообразной среде, патент № 2367716 увеличивается. Толщина зоны химических соединений экстремально зависит от состава атмосферы. Периодически изменяя концентрацию воздуха можно достичь наиболее высокой скорости насыщения и тем самым увеличить толщину упрочняемого слоя. Под влиянием кислорода на конструкционных сталях формируется более вязкая структура, на высоколегированных сталях на поверхности формируется зона способ обработки стальных изделий в газообразной среде, патент № 2367716 +Fе3О4 сопровождаемая образованием в диффузионном слое соединений типа Mex(N,O). Преимуществом такой обработки коррозионно-стойких сталей, содержащих хром, является отсутствие необходимости депассивации поверхности с использованием галогеносодержащих веществ.

Выполнение способа иллюстрируется на примерах.

Процесс азотирования проводился согласно прототипу и предлагаемому способу на цилиндрических образцах диаметром 10 мм и высотой 10 мм из конструкционных сталей 40Х, нитраллоев 38Х2МЮА, высоколегированных хромистых сталей 40Х13, высоколегированных жаропрочных сталей 12Х18Н10Т при нагреве до заданной температуры насыщения в интервале 450способ обработки стальных изделий в газообразной среде, патент № 2367716 780°С в атмосфере аммиака с последующей циклической выдержкой при этой же температуре (время цикла 100 с на 1,5 литра печи) в атмосферах воздуха и аммиака с попеременной сегрегационной подачей газов в цикле: сначала в атмосфере воздуха, затем - аммиака. Износостойкость диффузионных слоев после упрочнения определяли по методу испытаний на трение и изнашивание в соответствии с ГОСТ 23216-84. Характеристики механических свойств, толщины азотированных слоев на различных сталях, время азотирования и температуры азотирования для различных сталей показаны в таблице.

Примеры 1, 2 3, 4. Обработка деталей-образцов из конструкционных сталей 40Х, нитраллоев 38Х2МЮА, высоколегированных хромистых сталей 40Х13, высоколегированных жаропрочных сталей 12Х18Н10Т по способу, изложенному в прототипе. Детали-образцы нагревали в атмосфере диссоциированного аммиака до заданной температуры насыщения каждой стали, потом выдерживали сначала в газообразной смеси аммиака и ацетона, затем - в атмосфере воздуха. Значения твердости, износостойкости, толщина слоя, время проведения процесса и температура приведены в таблице.

Примеры 5, 6, 7, 8. Обработка деталей-образцов из конструкционных сталей 40Х, нитраллоев 38Х2МЮА, высоколегированных хромистых сталей 40Х13, высоколегированных жаропрочных сталей 12Х18Н10Т по предлагаемому способу. Детали-образцы нагревали в атмосфере аммиака до заданной температуры насыщения, далее проводили циклическую выдержку (время цикла 100 с на 1,5 литра печи) с попеременной сегрегационной подачей газов в цикле, сначала подавая воздух, затем - аммиак. Время выдержки для каждой атмосферы определялось эмпирически и контролировалось. Значения твердости, износостойкости, толщина слоя, время проведения процесса и температура приведены в таблице.

№ примераМарка сталиТем-ра азотир. °СВремя азотир. часТолщина азотир. слоя, мкмТвердость HV, ГПАЛинейный износ, мкм
1.Прототип40Х 520 4380способ обработки стальных изделий в газообразной среде, патент № 2367716 4005,6способ обработки стальных изделий в газообразной среде, патент № 2367716 6,016,3
2 Прототип 38Х2МЮА 5508 220способ обработки стальных изделий в газообразной среде, патент № 2367716 2357,5способ обработки стальных изделий в газообразной среде, патент № 2367716 8,011,2
3. Прототип 40Х13 5704 130способ обработки стальных изделий в газообразной среде, патент № 2367716 14511,5способ обработки стальных изделий в газообразной среде, патент № 2367716 12,06,0
4. Прототип 12Х18Н10Т 65016 45способ обработки стальных изделий в газообразной среде, патент № 2367716 5013,0способ обработки стальных изделий в газообразной среде, патент № 2367716 13,54,5
5. Предлагаемый способ40Х 5204 390способ обработки стальных изделий в газообразной среде, патент № 2367716 4156.5способ обработки стальных изделий в газообразной среде, патент № 2367716 7,014,0
6. Предлагаемый способ38Х2МЮА 550 8230способ обработки стальных изделий в газообразной среде, патент № 2367716 2409,8способ обработки стальных изделий в газообразной среде, патент № 2367716 9,98,8
7. Предлагаемый способ40Х13 570 4145способ обработки стальных изделий в газообразной среде, патент № 2367716 15513,6способ обработки стальных изделий в газообразной среде, патент № 2367716 14,05,1
8. Предлагаемый способ12Х18Н10Т 650 1655способ обработки стальных изделий в газообразной среде, патент № 2367716 6016,5способ обработки стальных изделий в газообразной среде, патент № 2367716 17,03,1

Таким образом, азотирование стальных изделий по предлагаемому способу позволяет сформировать на поверхности изделий упрочненную многослойную структуру, состоящую из чередующихся между собой слоев нитридных и оксидных фаз металлов, с оптимальным сочетанием повышенной твердости и износостойкости, позволяющую увеличить ресурс работы стальных изделий.

Класс C23C8/34 с введением более чем одного элемента в несколько стадий

способ циклического газового азотирования штампов из сталей для горячего деформирования -  патент 2519356 (10.06.2014)
способ химико-термической обработки стальных изделий -  патент 2478137 (27.03.2013)
способ азотирования изделий из легированных сталей -  патент 2367715 (20.09.2009)
способ получения изделий из металлов и сплавов, имеющих слоистую структуру, обусловленную контрастными концентрациями легирующих элементов, например, углерода и азота, внедряемых в металл методом химико-термической обработки -  патент 2235146 (27.08.2004)
способ нитрозакалки стали с двойной химико-термической обработкой -  патент 2184796 (10.07.2002)
способ химико-термической обработки стальных изделий -  патент 2052536 (20.01.1996)

Класс C23C8/26 стальных поверхностей

способ обработки деталей для кухонной утвари -  патент 2526639 (27.08.2014)
способ внутреннего азотирования ферритной коррозионно-стойкой стали -  патент 2522922 (20.07.2014)
способ циклического газового азотирования штампов из сталей для горячего деформирования -  патент 2519356 (10.06.2014)
способ азотирования деталей и устройство для его осуществления -  патент 2506342 (10.02.2014)
способ изготовления листа электротехнической стали с ориентированной зеренной структурой -  патент 2503728 (10.01.2014)
способ азотирования длинномерной полой стальной детали -  патент 2493288 (20.09.2013)
способ производства листа из электротехнической стали с ориентированным зерном -  патент 2465348 (27.10.2012)
столовые и/или сервировочные приборы, изготовленные из ферритной нержавеющей стали с мартенситным поверхностным слоем -  патент 2456906 (27.07.2012)
способ низкотемпературного азотирования стальных деталей -  патент 2415964 (10.04.2011)
способ ионного азотирования стали -  патент 2413784 (10.03.2011)
Наверх