способ получения магнитотвердого композиционного материала с нанокристаллической структурой
Классы МПК: | H01F1/10 неметаллические вещества, например ферриты B22F3/12 уплотнение и спекание B82B3/00 Изготовление или обработка наноструктур |
Автор(ы): | Лилеев Алексей Сергеевич (RU), Разумейко Борис Григорьевич (RU), Викторов Владислав Николаевич (RU), Жуков Дмитрий Геннадьевич (RU), Старикова Анна Сергеевна (RU), Дупляков Алексей Викторович (RU) |
Патентообладатель(и): | Федеральное государственное образовательное учреждение высшего профессионального образования "Государственный технологический университет"Московский институт стали и сплавов" (RU) |
Приоритеты: |
подача заявки:
2008-07-07 публикация патента:
20.09.2009 |
Изобретение относится к порошковой металлургии, в частности к получению постоянных порошкообразных магнитов с нанокристаллической структурой. Может использоваться при производстве высокоэнергетических постоянных магнитов на основе природного железосодержащего порошкообразного материала. Исходный порошковый материал, содержащий, мас.%: -Fe 25-50, Fе2О3 30-75, FeO 0,2-2, сопутствующие примеси - остальное, обрабатывают в высокоэнергетической мельнице, в которую загружены рабочие тела в виде стальных шариков. Обработку проводят при величине энергонапряженности, равной 12-20 Вт/г, в течение времени, необходимого для преобразования исходного порошкового материала в промежуточный порошковый материал, содержащий, мас.%: FeO 50-80, -Fe 10-35, аморфная фаза 10-30, сопутствующие примеси - остальное. Промежуточный материал прессуют при 300-600 МПа с получением компактных образцов и проводят термомагнитную обработку полученных образцов в вакуумных печах при остаточном давлении не менее 10-1 мм рт.ст., при температуре отжига, равной 200-400°С, в течение времени не менее 1 ч и при значении напряженности магнитного поля от 3 кЭ до 7 кЭ. Полученный магнитотвердый композиционный материал с нанокристаллической структурой, содержащий, мас.%: Fе3O4 65-80%, -Fe 35-20%, сопутствующие примеси - остальное, имеет магнитную и кристаллическую текстуру при сохранении высоких магнитных свойств. 8 з.п. ф-лы, 1 табл.
Формула изобретения
1. Способ получения магнитотвердого композиционного материала с нанокристаллической структурой, включающий загрузку в высокоэнергетическую мельницу исходного порошкового железосодержащего материала следующего фазового состава, мас.%:
-Fe | 25-50 |
Fе2 O3 | 30-75 |
FeO | 0,20-2,00 |
сопутствующие примеси | остальное, |
и рабочих тел в виде стальных шариков и обработку при величине энергонапряженности, равной 12-20 вт/г, в течение времени, необходимого для получения промежуточного порошкового железосодержащего материала следующего фазового состава, мас.%:
FeO | 50-80 |
-Fe | 10-35% |
аморфная фаза | 10-30 |
сопутствующие примеси | остальное, |
прессование полученного промежуточного порошкового железосодержащего материала при давлении 300-600 МПа с получением компактных образцов и термомагнитную обработку полученных компактных образцов в вакуумных печах при остаточном давлении не менее 10-1 мм рт.ст., при температуре отжига, равной 200-400°С, в течение времени не менее 1 ч и при значении напряженности магнитного поля от 3 до 7 кЭ с получением магнитотвердого композиционного материала следующего фазового состава, мас.%:
Fе3О4 | 65-80% |
-Fe | 35-20% |
сопутствующие примеси | остальное |
2. Способ по п.1, отличающийся тем, что для ускорения процесса измельчения при обработке в высокоэнергетической мельнице в исходный порошковый железосодержащий материал добавляют Со3О4 в количестве 3-20 мас.%.
3. Способ по п.1, отличающийся тем, что при обработке исходного порошкового железосодержащего материала используют высокоэнергетическую центробежную мельницу с двумя герметизируемыми барабанами.
4. Способ по п.3, отличающийся тем, что обработку исходного порошкового железосодержащего материала проводят в течение 3-7 ч.
5. Способ по п.3, отличающийся тем, что обработку исходного порошкового железосодержащего материала проводят при оптимальной скорости вращения вала высокоэнергетической центробежной мельницы, составляющей 1235 об/мин.
6. Способ по п.1, отличающийся тем, что при обработке в высокоэнергетической мельнице используют рабочие тела, выполненные из стали марки ШХ40 с диаметром 2-4 мм.
7. Способ по п.1, отличающийся тем, что исходного порошкового железосодержащего материала и рабочие тела загружают в высокоэнергетическую мельницу при соотношении 1:20.
8. Способ по п.1, отличающийся тем, что прессование промежуточного порошкового железосодержащего материала проводят в ручном прессе с получением компактных образцов кубической конфигурации 10×10×10 мм3.
9. Способ по п.8, отличающийся тем, что используют пресс-форму ручного пресса, выполненную из сплава на основе титана.
Описание изобретения к патенту
Изобретение относится к области получения постоянных порошкообразных магнитов с нанокристаллической структурой и может быть использовано при производстве высокоэнергетических постоянных магнитов на основе природного железосодержащего порошкообразного материала.
Изобретение может найти применение в электротехнике, в частности в электросчетчиках, генераторах тока и напряжения, электродвигателях, записывающих и воспроизводящих устройствах акустических и телевизионных приборов, а также в различных электробытовых приборах.
Известен способ получения магнитотвердого композиционного материала, включающий обработку исходного железосодержащего материала в мельнице (US 5482573 А, МПК7 Н01F 1/055, 09.01.1996).
Недостатком указанного способа является невозможность получения магнитотвердого материала заданного фазового состава нанокристаллической структуры с высокими магнитными свойствами.
Известен также способ получения магнитотвердого композиционного материала, включающий обработку исходного железосодержащего материала в мельнице (JP 4-22011 B1, 25.10.83, кл. H01F 1/06).
Недостатком указанного способа является невозможность получения магнитотвердого материала заданного фазового состава нанокристаллической структуры с высокими магнитными свойствами.
Известен способ получения магнитотвердого композиционного материала с нанокристаллической структурой, включающий обработку исходного железосодержащего материала в высокоэнергетической мельнице, в которую загружают измельчаемый исходный железосодержащий материал и рабочие тела, выполненные в виде стальных шариков, получение промежуточного железосодержащего материала и его термообработку в печах (US 5403407 А, МПК7 Н01F 1/053, 04.04.1995).
Недостатком указанного способа является невозможность получения магнитотвердого материала заданного фазового состава с высокими магнитными свойствами с использованием в качестве исходного сырья природного железосодержащего материала.
Прототипом изобретения является способ получения магнитотвердого композиционного материала с нанокристаллической структурой, обладающего высокими магнитными свойствами. Способ включает обработку исходного железосодержащего материала в высокоэнергетической мельнице, в которую загружают измельчаемый исходный железосодержащий материал и рабочие тела, выполненные в виде стальных шариков, получение промежуточного железосодержащего материала и его термообработку в печах. В качестве исходного железосодержащего материала используют природный порошковый железосодержащий материал следующего фазового состава, мас.%: Fе2O3 93,00-99,3, FeO 0,20-2,00, SiO2 0,20-3,00, сопутствующие примеси остальное. В результате вышеуказанных операций получают магнитотвердый композиционный материал с нанокристаллической структурой следующего фазового состава: Fе3O4, -Fe, FeO, SiO2, сопутствующие примеси. Техническим результатом изобретения является получение магнитотвердого композиционного материала с нанокристаллической структурой (RU 2203515 С1, опубл. 2003.04.27).
Недостатком указанного способа является невозможность получения материала с анизотропией магнитных свойств.
В изобретении достигается технический результат, заключающийся в обеспечении возможности формирования в магнитотвердом композиционном материале кристаллической и магнитной текстур при сохранении высоких магнитных свойств.
Указанный технический результат достигается следующим образом.
Способ получения магнитотвердого композиционного материала с нанокристаллической структурой включает обработку исходного порошкового железосодержащего материала следующего фазового состава, мас.%:
-Fe - 25-50%
Fе2О3 - 30-75%
FeO - 0,20-2,00
сопутствующие примеси - остальное,
в высокоэнергетической мельнице. В мельницу загружают измельчаемый исходный железосодержащий материал и рабочие тела, выполненные в виде стальных шариков, обработку проводят при величине энергонапряженности, равной 12-20 Вт/г, в течение времени, необходимого для преобразования исходного порошкового железосодержащего материала в промежуточный порошковый железосодержащий материал следующего фазового состава, мас.%:
FeO - 50-80%,
-Fe - 10-35%,
аморфная фаза - 10-30%,
сопутствующие примеси - остальное.
Затем проводят прессование промежуточного порошкового железосодержащего материала при изменении давления в диапазоне 300-600 МПа с получением компактных образцов. После чего осуществляют термомагнитную обработку полученных компактных образцов в вакуумных печах при остаточном давлении не менее 10-1 мм рт.ст., при температуре отжига, равной 200-400°С, в течение времени не менее 1 ч и при значении напряженности магнитного поля от 3 кЭ до 7 кЭ. В результате получают магнитотвердый композиционный материал с нанокристаллической структурой следующего фазового состава, мас.%:
Fе3O4 - 65-80%,
-Fe - 35-20%,
сопутствующие примеси - остальное.
Для ускорения процесса измельчения в исходный порошковый железосодержащий материал добавляют Со3O4 в количестве 3-20 мас.%.
Обработку исходного железосодержащего материала проводят в высокоэнергетической центробежной мельнице с двумя герметизируемыми барабанами, в которые загружаются измельчаемый материал и рабочие тела.
Обработку исходного железосодержащего материала в высокоэнергетической центробежной мельнице проводят в течение 3-7 ч.
При этом рабочие тела выполнены из стали марки ШХ40 и имеют диаметр 2-4 мм.
Соотношение масс исходного измельчаемого материала и рабочих тел составляет 1:20.
Оптимальная скорость вращения вала высокоэнергетической центробежной мельницы составляет 1235 об/мин.
Прессование промежуточного порошкового железосодержащего материала проводят в ручном прессе, при изменении давления в диапазоне 300-600 МПа с получением компактных образцов кубической конфигурации 10×10×10 мм3 .
Пресс-форма ручного пресса выполнена из сплава на основе титана.
В предложенном способе в результате обработки в высокоэнергетической мельнице природного порошкообразного крупнозернистого материала, например, имеющегося в отходах железосодержащих месторождений, получают измельченный магнитотвердый композиционный материал с нанокристаллической структурой и измененным фазовым составом. Полученный таким образом материал обладает хорошими магнитными свойствами (коэрцитивная сила по намагниченности ( IHc) порядка 400 Э).
Дальнейший рост магнитных свойств достигается посредством термомагнитной обработки измельченного материала, при котором происходит практически полный распад FeO и аморфной фазы на две магнитные фазы: магнетит Fе3O4 и -Fe.
В итоге полученный материал обладает высокими магнитными свойствами: коэрцитивная сила по намагниченности (IHc) около 800 Э, намагниченность насыщения (4 Is) около 10,0 кГс, остаточная намагниченность (4 Iг) около 5,0 кГс.
Для ускорения процесса измельчения в исходную смесь возможно добавление оксида кобальта Со3O4 в количестве 3-20%.
Создание в материале кристаллической и магнитной текстур достигается проведением термомагнитной обработки, при которой происходит направленный распад аморфной фазы и метастабильной фазы FeO, с образованием магнетита Fе3O4 и -Fe, приводящий к анизотропии магнитных свойств.
Пример выполнения способа.
Исходный железосодержащий материал в следующем составе: -Fe - 35%, Fe2О3 - 63%, FeO - 1%, остальное - сопутствующие примеси, а также рабочие тела - шарики из стали марки ШХ40 диаметром 2-4 мм загружают в высокоэнергетическую центробежную мельницу с двумя герметизируемыми барабанами.
Соотношение масс исходного измельчаемого материала и стальных шариков составляет 1:20.
Обработку исходного железосодержащего материала в высокоэнергетической центробежной мельнице проводят в течение 8 часов.
Оптимальная скорость вращения вала высокоэнергетической центробежной мельницы составляет 1235 об/мин.
В результате такой обработки происходит преобразование исходного железосодержащего материала в промежуточный железосодержащий материал, в фазовом составе которого имеются FeO, -Fe, аморфная фаза и сопутствующие примеси, в которых также может присутствовать Fе3O4.
В результате обработки природного порошкообразного материала в высокоэнергетической мельнице получают композиционный материал с нанокристаллической структурой. Размер областей когерентного рассеяния материала (блоков) порядка 10,0 нм. В отличие от исходного этот порошок имеет свойства, характерные для магнитотвердых материалов: коэрцитивная сила по намагниченности (IHc ) около 400 Э, остаточная намагниченность (4 Iг) около 1,5 кГс.
Далее проводят термомагнитную обработку промежуточного железосодержащего материала в вакуумных печах при остаточном давлении не менее 10-1 мм рт.ст. и напряженности магнитного поля 4 кЭ. Температура отжига в интервале от 200°С до 400°С. Отжигают материал в печах в течение времени не менее 1 часа до получения в результате магнитотвердого композиционного материала с нанокристаллической структурой и анизотропными свойствами следующего фазового состава: -Fe - 30%,
Fе3O4 - 68%, сопутствующие примеси - остальное.
На этой стадии обработки материала происходит практически полный распад фазы FeO и аморфной фазы на две ферромагнитные фазы: магнетит Fе3O4 и -Fe, т.е. формируется благоприятный фазовый состав железосодержащего материала для дальнейшего роста его магнитных свойств.
В итоге полученный магнитотвердый композиционный материал с нанокристаллической структурой обладает высокими магнитными свойствами: коэрцитивная сила по намагниченности до 800 Э, намагниченность насыщения порядка 10,0 кГс, остаточная намагниченность порядка 5,0 кГс.
Магнитное поле, приложенное в процессе термической обработки, способствует тому, что при распаде аморфной фазы и фазы FeO образование кристаллитов: фаз
Fе3O4 и -Fe - происходит ориентированно, когда оси легкого намагничивания кристаллитов направлены в основном вдоль силовых линий магнитного поля. Этим достигается образование в материале кристаллической и, соответственно, магнитной текстур.
О наличии магнитной текстуры можно судить по отношению величин остаточной намагниченности, измеренных в параллельном и перпендикулярном направлениях относительно оси текстуры .
В таблице приведены значения остаточной намагниченности образцов и ее анизотропия для следующего исходного состава материала: -Fe - 35%, Fе2О3 - 63%, FeO - 0,5%, остальное - сопутствующие примеси. Как видно из таблицы отношение (анизотропия остаточной намагниченности) с увеличением магнитного поля, приложенного во время термомагнитной обработки, растет и при напряженности магнитного поля 7 кЭ достигает значения 2,2.
В результате использования термомагнитной обработки полученный магнитотвердый композиционный порошковый материал близок по свойствам к ряду промышленных сплавов Fe-Al-Ni, Fe-Al-Ni-Co и может быть использован достаточно широко в различных областях электротехники: производстве счетчиков электрической энергии, электромагнитных приборов, электродвигателей малой энергии и изделиях широкого потребления.
Таблица | |||
Параметры термомагнитной обработки | Остаточная намагниченность вдоль поля, , кГс | Остаточная намагниченность поперек поля, , кГс | Анизотропия остаточной намагниченности |
Отжиг без магнитного поля | 2,3 | 2,3 | 1,0 |
Отжиг в магнитном поле 3 кЭ | 3,0 | 2,1 | 1,43 |
Отжиг в магнитном поле 4 кЭ | 3,3 | 2,0 | 1,65 |
Отжиг в магнитном поле 7 кЭ | 4,0 | 1,8 | 2,2 |
Класс H01F1/10 неметаллические вещества, например ферриты
Класс B22F3/12 уплотнение и спекание
Класс B82B3/00 Изготовление или обработка наноструктур