энергодвигательная установка для дирижабля
Классы МПК: | B60L11/18 с использованием энергии от первичных или вторичных элементов или от топливных элементов H01M8/04 вспомогательные устройства и способы, например для регулирования давления, для циркуляции текучей среды B64D27/24 с паровыми, электрическими или пружинными двигателями B64D35/02 отличающиеся по типу силовой установки |
Автор(ы): | Глухих Игорь Николаевич (RU), Челяев Владимир Филиппович (RU), Щербаков Андрей Николаевич (RU) |
Патентообладатель(и): | Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" (RU) |
Приоритеты: |
подача заявки:
2008-03-12 публикация патента:
27.09.2009 |
Изобретение относится к электрооборудованию транспортных средств для воздухоплавания. Энергодвигательная установка содержит оболочку с несущим газом, пропеллерную группу с электроприводом, электролизную установку с системой терморегулирования, солнечную батарею, электрически связанную с электроприводом пропеллерной группы и электролизной установкой, электрохимический генератор с системой терморегулирования, электрически связанный с электроприводом пропеллерной группы, блок хранения кислорода и водорода, пневматически соединенный с электрохимическим генератором и электролизной установкой, резервуар с водой, гидравлически соединенный с электролизной установкой и электрохимическим генератором, электронасос. Введены газожидкостный теплообменник с вентилятором, размещенный в оболочке с несущим газом, и внешние теплообменники систем терморегулирования электрохимического генератора и электролизной установки, расположенные в резервуаре с водой, который выполнен с теплозащитным покрытием. Электронасос и вентилятор соединены с электрохимическим генератором. Газожидкостный теплообменник с электронасосом и резервуаром с водой образуют замкнутый гидравлический контур. Изобретение направлено на повышение эффективности. 1 ил.
Формула изобретения
Энергодвигательная установка для дирижабля, включающая оболочку с несущим газом, пропеллерную группу с электроприводом, электролизную установку с системой терморегулирования, солнечную батарею, электрически связанную с электроприводом пропеллерной группы и электролизной установкой, электрохимический генератор с системой терморегулирования, электрически связанный с электроприводом пропеллерной группы, блок хранения кислорода и водорода, пневматически соединенный с электрохимическим генератором и электролизной установкой, резервуар с водой, гидравлически соединенный с электролизной установкой и электрохимическим генератором, электронасос, отличающаяся тем, что в нее введены газожидкостный теплообменник с вентилятором, размещенные в оболочке с несущим газом, причем электронасос и вентилятор соединены с электрохимическим генератором, а газожидкостный теплообменник с электронасосом и резервуаром с водой образуют замкнутый гидравлический контур, кроме того, в установку введены внешние теплообменники систем терморегулирования электрохимического генератора и электролизной установки, расположенные в резервуаре с водой, который выполнен с теплозащитным покрытием.
Описание изобретения к патенту
Изобретение относится к технике воздухоплавания и может использоваться при разработке энергоустановок для дирижаблей, преимущественно для высотных дирижаблей (стратодирижаблей).
Разрабатываемые в настоящее время концепции высотных дирижаблей (ВД) предусматривают создание беспилотных крупногабаритных (с объемом ~2000 м3) дирижаблей, длительное время сохраняющих свое месторасположение в стратосфере, на высоте ~20 км. Это превышает потолок высоты для самолетов, а разреженный воздух на этой высоте имеет температуру минус 70°С.
Подобные системы служат для размещения наблюдательных пунктов, предназначенных для мониторинга Земли и атмосферы в хозяйственных и военных целях. Они занимают промежуточное положение между наземными радарными станциями и космическими спутниками.
Единственным восполняемым источником энергии в таких условиях служит лишь солнечное излучение, поэтому на внешней поверхности дирижабля размещается солнечная батарея (СБ). Электроэнергия, вырабатываемая СБ днем, идет как на текущее обеспечение нужд дирижабля (работа пропеллеров, аппаратуры и т.д.), так и на аккумулирование - для обеспечения нужд ВД ночью, когда СБ не работает. При этом в ночное время требуются дополнительные энергозатраты для компенсации потери подъемной силы ВД, поскольку ночью приходит охлаждение оболочки ВД и находящегося в ней несущего газа (Н2 или Не).
Аналогом предлагаемому техническому решению может служить энергодвигательная установка (ЭДУ) дирижабля по патенту США № 5348254 от 20.04.1994 г., МПК6: B64B 1/06, B64B 1/58, которая включает в себя солнечную батарею, электролизер воды, вырабатывающий днем водород, и двигатель внутреннего сгорания (ДВС), который ночью работает на этом водороде, вырабатывая электричество.
Днем энергоснабжение такого дирижабля осуществляется от солнечной батареи, а ночью работу пропеллеров обеспечивает водородный ДВС. Потери подъемной силы в ночное время компенсируются за счет горячих выхлопных газов ДВС (азота), которые направляются в несущую оболочку дирижабля.
К недостаткам такого технического решения можно отнести, в первую очередь, наличие на борту дирижабля водородного ДВС и связанные с этим факторы:
- небольшой ресурс работы ДВС без технического обслуживания;
- сложности, связанные с повторным пуском ДВС в автоматическом режиме (например, при нештатной ситуации);
- возможность детонации водородо-воздушной смеси в цилиндре двигателя;
- необходимость нагревания и компремирования воздуха перед его подачей в ДВС;
- низкий суммарный КПД ЭДУ, обусловленный низким КПД водородного ДВС.
Техническим решением, более близким к предлагаемому и выбранным за прототип, является ЭДУ для дирижабля, описанная в журнале NASA AIAA 2003, № 6088, 1st International Energy Conversion Engineering Conference 17-21 August 2003, Portsmouth, Virginia, c.1-8 (копия прилагается). Энергодвигательная установка для дирижабля содержит оболочку с несущим газом, пропеллерную группу с электроприводом, электролизную установку с системой терморегулирования, солнечную батарею, электрически связанную с электроприводом пропеллерной группы и электролизной установкой, электрохимический генератор с системой терморегулирования, электрически связанный с электроприводом пропеллерной группы, блок хранения кислорода и водорода, пневматически соединенный с электрохимическим генератором и электролизной установкой, резервуар с водой, гидравлически соединенный с электролизной установкой и электрохимическим генератором, электронасос. В этом случае использована работающая днем электролизная установка (ЭЛУ), вырабатывающая кислород и водород, и электрохимический генератор (ЭХГ), вырабатывающий из этих газов электричество в ночное время. Тепло, выделяемое агрегатами данной ЭДУ, сбрасывается в окружающее пространство, а потери подъемной силы дирижабля ночью компенсируются за счет подключения дополнительных (вертолетных) пропеллеров.
В отличие от аналога данная ЭДУ имеет большой ресурс работы в автоматическом режиме, поскольку ЭХГ в отличие от ДВС не имеет подвижных частей. В ЭХГ невозможна детонация водорода, и ЭХГ легко меняет режимы работы при автоматическом управлении. Кроме того, КПД ЭХГ (~50÷60%) вдвое больше КПД ДВС.
Недостатком прототипа является невысокий суммарный КПД энергодвигательной установки в целом, особенно в процессе аккумулирования энергии. Если считать КПД ЭЛУ и ЭХГ равным ~50%, то в процессе передачи электроэнергии от СБ к двигательной установке, работающей ночью, по цепочке «ЭЛУ - баллоны с газами - ЭХГ» эффективность установки составляет ~0,5×0,5=25%.
Таким образом, 75% электроэнергии, направляемой днем на аккумулирование, ночью не доходит до ДУ, поскольку превращается в тепло при работе ЭХГ и ЭЛУ. В то же время именно ночью необходима дополнительная энергия для компенсации потери подъемной силы.
Задачей изобретения является рациональное использование тепловых потерь электрохимических агрегатов (ЭЛУ и ЭХГ).
Техническим результатом изобретения является повышение общей эффективности энергодвигательной установки для дирижабля.
Технический результат достигается тем, что в энергодвигательную установку для дирижабля, включающую:
- оболочку с несущим газом;
- пропеллерную группу с электроприводом;
- ЭЛУ с системой терморегулирования (СТР);
- солнечную батарею, электрически связанную с электроприводом пропеллерной группы и электролизной установкой;
- ЭХГ с системой терморегулирования, электрически связанный с приводом пропеллерной группы;
- блок хранения кислорода и водорода, пневматически соединенный с ЭХГ и электролизной установкой;
- резервуар с водой (РСВ), гидравлически соединенный с ЭЛУ и ЭХГ,
- электронасос, введены:
газожидкостный теплообменник (ГЖТ) с вентилятором, размещенные в оболочке с несущим газом, причем электронасос и вентилятор соединены с электрохимическим генератором, а газожидкостный теплообменник - с электронасосом и РСВ образуют замкнутый гидравлический контур, кроме того, в установку введены внешние теплообменники СТР ЭХГ и ЭЛУ, расположенные в резервуаре с водой, который выполнен с теплозащитным покрытием.
Суть предложения заключается в рациональном использовании тепла, выделяемого электрохимическими агрегатами (ЭХГ и электролизером). В отличие от прототипа, где это тепло сбрасывается в окружающую среду, здесь тепло используется для нагревания газа в оболочке дирижабля. При этом передача тепла несущему газу происходит при работающем ЭХГ, то есть в ночное время. Тем самым компенсируется ночное уменьшение подъемной силы дирижабля.
При большом объеме оболочки дирижабля конвективный теплообмен будет слишком медленным и неэффективным из-за теплоотдачи в холодный наружный воздух. Поэтому здесь несущий газ нагревается в процессе принудительной циркуляции (для чего служит вентилятор). Такая мера способствует также продольному уравновешиванию дирижабля.
Сущность изобретения поясняется чертежом, на котором представлена принципиальная схема предлагаемой энергодвигательной установки для дирижабля, где обозначено:
1 - оболочка с несущим газом;
2 -электропривод пропеллерной группы;
3 - электролизная установка (ЭЛУ);
4 - система терморегулирования (СТР) ЭЛУ;
5 - солнечная батарея (СБ);
6 - электрохимический генератор (ЭХГ);
7 - система терморегулирования ЭХГ;
8 - блок хранения кислорода и водорода;
9 - резервуар с водой (РСВ) с теплозащитным покрытием;
10 - газожидкостный теплообменник (ГЖТ);
11 - вентилятор;
12 - электронасос;
13 - внешний теплообменник СТР ЭХГ;
14 - внешний теплообменник СТР ЭЛУ.
Сплошными линиями на чертеже обозначены связи, работающие днем, пунктиром - связи, работающие ночью.
В оболочке с несущим газом 1 дирижабля размещен ГЖТ 10 с вентилятором 11, при этом ГЖТ 10 и РСВ 9 образуют замкнутый гидравлический контур, в который входит также электронасос 12. Питание электронасоса 12 и вентилятора 11 осуществляется от ЭХГ 6, в состав которого входит система терморегулирования 7.
Солнечная батарея 5 электрически соединена с электроприводом пропеллерной группы 2 и с ЭЛУ 3, в состав которой входит система терморегулирования 4.
Кроме этого, ЭДУ включает в себя блок хранения кислорода и водорода 8 и РСВ 9, в котором размещены внешний теплообменник СТР ЭХГ 13 и внешний теплообменник СТР ЭЛУ 14. ЭЛУ 3 и ЭХГ 6 соединены с блоком хранения кислорода и водорода 8, а также с РСВ 9 с теплозащитным покрытием.
Работает ЭДУ следующим образом.
В дневное время ЭХГ 6 не работает за исключением своей СТР 7. Электроэнергия, вырабатываемая СБ 5, обеспечивает питание электропривода пропеллерной группы 2 и одновременно направляется в ЭЛУ 3, где проводится разложение воды, поступающей из РСВ 9, а полученные газы направляются в блок хранения кислорода и водорода 8.
Тепло, вырабатываемое ЭЛУ 3, выносится СТР ЭЛУ 4 во внешний теплообменник 14, размещенный в РСВ 9, и вода там нагревается. Часть этого тепла выносится из РСВ 9 в СТР ЭХГ 7 теплообменником 13, чем поддерживает дежурный тепловой режим ЭХГ 6. Основная же часть тепловой энергии накапливается в теплоизолированном РСВ 9.
В ночное время СБ 5 не работает. ЭЛУ 3 не работает, но работает СТР 4, которая поддерживает ее дежурный тепловой режим. Питание электропривода пропеллерной группы 2 происходит от ЭХГ 6, в который подаются рабочие газы из блока хранения кислорода и водорода 8. Реакционная вода ЭХГ 6 собирается в теплоизолированный РСВ 9.
Кроме питания электропривода пропеллерной группы 2 электроэнергия, вырабатываемая ЭХГ 6, используется также для питания электронасоса 12, подающего горячую воду из РСВ 9 в ГЖТ 10, который размещен в оболочке с несущим газом 1. Вентилятор 11, также работающий от ЭХГ 6 и размещенный в оболочке с несущим газом 1, охлаждает ГЖТ 10 потоком этого газа.
В результате несущий газ в оболочке 1 нагревается, что компенсирует повышенный теплоотвод через оболочку в окружающую среду в ночное время.
Таким образом, рациональное использование тепла, выделяемого электрохимическими агрегатами (ЭХГ и ЭЛУ) энергодвигательной установки для дирижабля, позволяет повысить общую эффективность этой установки.
Класс B60L11/18 с использованием энергии от первичных или вторичных элементов или от топливных элементов
Класс H01M8/04 вспомогательные устройства и способы, например для регулирования давления, для циркуляции текучей среды
Класс B64D27/24 с паровыми, электрическими или пружинными двигателями