плазменный источник проникающего излучения

Классы МПК:H05H1/00 Получение плазмы; управление плазмой
Автор(ы):, , , , , ,
Патентообладатель(и):Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательсий институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") (RU)
Приоритеты:
подача заявки:
2008-02-27
публикация патента:

Плазменный источник проникающего излучения относится к плазменной технике, в частности к устройствам для генерирования нейтронных пучков, а именно к генераторам разовых импульсов нейтронного излучения, и может быть использован для проведения ядерно-физических исследований. Изобретение направлено на увеличение выхода нейтронов в импульсе плазменного источника проникающего излучения, а также обеспечения стабильной работы. Плазменный источник проникающего излучения состоит из газоразрядной камеры, содержащей газоразрядные электроды и заполненной изотопами водорода, высоковольтного импульсного генератора, подключенного к газоразрядным электродам и введены устройство управления высоковольтными импульсными генераторами, дополнительный высоковольтный импульсный генератор, подключенный к аноду газоразрядной камеры и формирующий предварительный высоковольтный импульс. Дополнительный высоковольтный импульсный генератор может быть выполнен на последовательно соединенных емкостном накопителе и высоковольтном коммутаторе или в виде генератора импульсов тока наносекундной длительности на отрезках длинных линий. Дополнительный высоковольтный импульсный генератор формирует предварительный высоковольтный импульс амплитудой (100-500) А и длительностью (20-100) нс, устройство управления высоковольтными импульсными генераторами формирует на первом выходе управляющий импульс с задержкой (30-150) нс по отношению к импульсу со второго выхода. 4 з.п. ф-лы, 1 ил.

плазменный источник проникающего излучения, патент № 2370001

Формула изобретения

1. Плазменный источник проникающего излучения, состоящий из газоразрядной камеры, содержащей газоразрядные электроды и заполненной изотопами водорода, в которой формируется разряд типа плазменный фокус, высоковольтного импульсного генератора, подключенного к газоразрядным электродам, отличающийся тем, что в него введены устройство управления высоковольтными импульсными генераторами и дополнительный высоковольтный импульсный генератор, подключенный к аноду газоразрядной камеры и формирующий предварительный высоковольтный импульс, причем полярность тока дополнительного и основного высоковольтных импульсных генераторов совпадают, а устройство управления высоковольтными импульсными генераторами вторым выходом подключено к управляющему входу дополнительного высоковольтного импульсного генератора.

2. Плазменный источник проникающего излучения по п.1, отличающийся тем, что дополнительный высоковольтный импульсный генератор выполнен на последовательно соединенных емкостном накопителе и высоковольтном коммутаторе, общий вывод которых через зарядный резистор подключен к источнику питания.

3. Плазменный источник проникающего излучения по п.1, отличающийся тем, что дополнительный высоковольтный импульсный генератор выполнен в виде генератора импульсов тока наносекундной длительности на отрезках длинных линий, выполненных в виде коаксиальных спиралей.

4. Плазменный источник проникающего излучения по п.1, отличающийся тем, что дополнительный высоковольтный импульсный генератор формирует предварительный высоковольтный импульс амплитудой (100-500) А и длительностью (20-100) нс.

5. Плазменный источник проникающего излучения по п.1, отличающийся тем, что устройство управления высоковольтными импульсными генераторами формирует на первом выходе управляющий импульс с задержкой (30-150) нс по отношению к импульсу со второго выхода.

Описание изобретения к патенту

Изобретение относится к плазменной технике, в частности к устройствам для генерирования нейтронных пучков, а именно к генераторам разовых импульсов нейтронного излучения, и может быть использовано для проведения ядерно-физических исследований, изучения радиационной стойкости, например элементов электронной аппаратуры, калибровки детекторов нейтронных излучений.

Известен плазменный источник проникающего излучения, выполненный в виде плазменной разрядной камеры, заполненной изотопами водорода и содержащей газоразрядные электроды. Электроды разрядной камеры известного плазменного источника выполняются цилиндрическими или плоскими (см., например, авторское свидетельство № 347006, кл. Н05Н 1/00, 1971). При определенных условиях разряда, когда осуществляется кумуляция прямого Z - пинча, из разрядной камеры может быть получен нейтронный выход до 3·10 10 нейтронов в импульсе при длительности импульса около 0,2 мкс.

Известный источник характеризуется недостаточным удельным выходом излучения на единицу затраченной энергии и небольшим ресурсом работы (10-100 кумуляции Z - пинча с генерацией нейтронного и рентгеновского излучений). Кроме того, известный источник обладает значительными размерами, затрудняющими в ряде случаев его использование.

В качестве прототипа по наибольшему количеству совпадающих конструктивных признаков принят плазменный источник проникающего излучения (патент РФ на полезную модель № 65709, кл. Н05Н 1/00, 2007), состоящий из газоразрядной камеры, содержащей газоразрядные электроды и заполненной изотопами водорода, и источника электрического питания.

Известный источник характеризуется недостаточной стабильностью работы (разбросом значений выходов).

Стабильность работы плазменного источника описывают параметром - среднеквадратическим отклонением (СКО), который вычисляют по формуле (1):

плазменный источник проникающего излучения, патент № 2370001

где Ni - выход нейтронов в импульсе,

Ncp - среднее значение выхода нейтронов в импульсе,

m - число включений генератора.

Предлагаемое изобретение направлено на увеличение выхода нейтронов в импульсе плазменного источника проникающего излучения, а также обеспечения стабильной работы плазменного источника.

Для повышения нейтронного выхода и стабильности работы плазменного источника проникающего излучения в плазменный источник проникающего излучения, состоящий из газоразрядной камеры, содержащей газоразрядные электроды и заполненной изотопами водорода, в которой формируется разряд типа плазменный фокус, и высоковольтного импульсного генератора, подключенного к газоразрядным электродам, введены устройство управления высоковольтными импульсными генераторами и дополнительный высоковольтный импульсный генератор, подключенный к аноду газоразрядной камеры и формирующий предварительный высоковольтный импульс, причем полярности тока дополнительного и основного высоковольтных импульсных генераторов совпадают, а устройство управления высоковольтными импульсными генераторами вторым выходом подключено к управляющему входу дополнительного высоковольтного импульсного генератора, причем дополнительный высоковольтный импульсный генератор может быть выполнен на последовательно соединенных емкостном накопителе и высоковольтном коммутаторе, общий вывод которых через зарядные резисторы подключен к источнику питания, или в виде генератора импульсов тока наносекундной длительности на отрезках длинных линий, выполненных в виде коаксиальных спиралей, дополнительный высоковольтный импульсный генератор формирует предварительный высоковольтный импульс амплитудой (100-500) А и длительностью (20-100) нс, причем устройство управления высоковольтными импульсными генераторами формирует на первом выходе управляющий импульс с задержкой (30-150) нс по отношению к импульсу со второго выхода.

Схема плазменного источника проникающего излучения приведена на чертеже.

Плазменный источник проникающего излучения содержит газоразрядную камеру, состоящую из двух коаксиально расположенных металлических электродов: внутренний электрод 1 является анодом, а внешний электрод 2 является катодом, генератор газа 3, между анодом 1 и катодом 2 размещен изолятор 4, в непосредственной близости от которого на катоде выполнены цилиндрические углубления (зенковка) 5, расположенные равномерно по окружности, центр которой находится на оси камеры. Разрядная камера (через коаксиальные или плоские проводники) соединена с высоковольтным импульсным генератором, выполненным, например, на емкостном накопителе 6, высоковольтном коммутаторе 7, зарядных резисторах 8. Плазменный источник содержит также задатчик 9 потенциала на аноде 1, выполненный, например, на резисторах, и дополнительный высоковольтный импульсный генератор, выполненный, например, на емкостном накопителе 10, высоковольтном коммутаторе 11 и зарядных резисторах 12, который обеспечивает подачу предварительного импульса в интервале времени от 30 до 300 нс (в нашем случае 50 нс) с амплитудой первой полуволны от 50 А до 10 кА (в нашем случае 200 А) по сигналу устройства управления высоковольтными импульсными генераторами 13. Полярности тока предварительного импульса и основного токового импульса совпадают.

Цилиндрические углубления 5, выполненные в корпусе разрядной камеры, необходимы для равномерного распределения тока в разрядной камере.

Объем разрядной камеры может быть заполнен изотопами водорода (дейтерием, смесью дейтерия и трития или тритием)

Работает плазменный источник следующим образом.

Выбирают режим работы плазменного источника следующий: по команде устройства управления 13 срабатывает высоковольтный коммутатор 11 дополнительного генератора, при этом вся запасенная энергия на емкостном накопителе 10 поступает на электроды 1, 2 газоразрядной камеры, что приводит к предварительной ионизации газа около изолятора, через (30-150) нс срабатывает высоковольтный коммутатор 7 основного разрядного контура и вся запасенная энергия из емкостного накопителя 6 поступает на электроды 1, 2 разрядной камеры. В результате в ионизированном предварительным импульсом газе вблизи изолятора развивается разряд с образованием более однородной цилиндрической токовой плазменной оболочки. Под действием электродинамических сил плазменная оболочка отходит от изолятора 4 и движется с ускорением по межэлектродному зазору к области фокусировки 16 (плазменный фокус), которая находится на оси разрядной камеры вблизи поверхности анода 1. Формирующийся плазменный фокус 16 является источником нейтронов (и рентгеновских лучей).

Приложение предварительного импульса к электродам разрядной камеры приводит к увеличению выхода нейтронов в импульсе в два и более раза, уменьшению среднеквадратического отклонения с 30-50 до 10-15%.

Класс H05H1/00 Получение плазмы; управление плазмой

электродуговой шестиструйный плазматрон -  патент 2529740 (27.09.2014)
высоковольтный плазмотрон -  патент 2529056 (27.09.2014)
устройство с магнитным удержанием плазмы, типа "открытая ловушка с магнитными пробками" -  патент 2528628 (20.09.2014)
магнитный блок распылительной системы -  патент 2528536 (20.09.2014)
стационарный плазменный двигатель малой мощности -  патент 2527898 (10.09.2014)
электрод плазменной горелки -  патент 2526862 (27.08.2014)
охлаждающая труба, электродержатель и электрод для плазменно-дуговой горелки, а также состоящие из них устройства и плазменно-дуговая горелка с ними -  патент 2524919 (10.08.2014)
плавильный плазмотрон -  патент 2524173 (27.07.2014)
система электростатического ионного ускорителя -  патент 2523658 (20.07.2014)
способ формирования компактного плазмоида -  патент 2523427 (20.07.2014)
Наверх