способ выявления обсемененности объектов внешней среды грамотрицательными бактериями рода pseudomonas и acinetobacter

Классы МПК:C12Q1/68 использующие нуклеиновые кислоты
Автор(ы):, ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования "Пермская государственная медицинская академия имени академика Е.А. Вагнера Федерального агентства по здравоохранению и социальному развитию" (RU)
Приоритеты:
подача заявки:
2008-02-27
публикация патента:

Изобретение относится к биотехнологии. Способ включает исследование смывов. Смывы фильтруют через бактериальные фильтры с диаметром пор 0,22 мкм, на которых концентрируются бактерии, содержащиеся в минимальных количествах и/или покоящиеся формы, с последующим ПЦР-анализом элюированной тотальной ДНК с использованием родо- и видоспецифичных праймеров к данным бактериям. Изобретение позволяет повысить эффективность выявления обсемененности объектов внешней среды бактериями. 3 ил., 1 табл.

способ выявления обсемененности объектов внешней среды грамотрицательными   бактериями рода pseudomonas и acinetobacter, патент № 2372406 способ выявления обсемененности объектов внешней среды грамотрицательными   бактериями рода pseudomonas и acinetobacter, патент № 2372406 способ выявления обсемененности объектов внешней среды грамотрицательными   бактериями рода pseudomonas и acinetobacter, патент № 2372406

Формула изобретения

Способ выявления обсемененности объектов внешней среды грамотрицательными бактериями рода Pseudomonas и Acinetobacter путем исследования смывов, отличающийся тем, что смывы фильтруют через бактериальные фильтры с диаметром пор 0,22 мкм, на которых концентрируются бактерии, содержащиеся в минимальных количествах, и/или покоящиеся формы, с последующим ПЦР-анализом элюированной тотальной ДНК с использованием родо- и видоспецифичных праймеров к данным бактериям.

Описание изобретения к патенту

Изобретение относится к области медицины, а именно эпидемиологии и санитарной микробиологии.

Эффективность микробиологического контроля санитарного состояния в стационарах различного профиля в значительной степени зависит от используемых при этом диагностических тестов. Решение этой задачи осложняется в ряде случаев неэффективностью бактериологической диагностики, поскольку в современных условиях циркуляция госпитальных штаммов может сопровождаться формированием некультивируемых форм бактерий (А.В.Соколенко, Т.Н.Мухина, 2006), не выявляемых традиционными культуральными методами.

Известен способ планового бактериологического контроля в ЛПУ, основанный на определении общего микробного числа и наличия санитарно-показательных микроорганизмов (в том числе грамотрицательных бактерий группы кишечной палочки и др.) в соответствии с приказом МЗ СССР № 720 от 31.07.1978 г., приложение № 2 и МУ по эпидемиологическому надзору за внутрибольничными инфекциями. МЗ СССР № 28-6/34 от 02.12.87.

Недостатки прототипа: трудоемок, продолжителен во времени, не выявляет покоящиеся формы.

Технический результат: сокращение сроков исследования, возможность выявления покоящихся форм грамотрицательных бактерий.

Решение указанной задачи осуществляют следующим образом: при осуществлении санитарного контроля в лечебных учреждениях смывы с объектов внешней среды фильтруют через бактериальные фильтры, размеры пор которых обеспечивают концентрацию всех, в том числе покоящихся, форм бактерий, но исключают контаминацию фильтра случайными фрагментами ДНК. Затем фильтры помещают в пробирку с 1 мл сверхчистой воды, кипятят, центрифугируют, отделяют супернатант, из него осаждают тотальную ДНК изопропиловым спиртом и подвергают ПЦР-анализу с использованием видо- и родоспецифичных праймеров грамотрицательных бактерий.

Способ осуществляют следующим образом: смывы получают стерильным ватным тампоном или марлевыми салфетками размером 5×5 см, для увлажнения которых используют стерильный физиологический раствор. При контроле мелких предметов смывы забирают с поверхности всего предмета. При контроле предметов с большой поверхностью смывы проводят в нескольких местах исследуемого предмета площадью в 100-200 см2. Тампоны и салфетки помещают во флакон с 200 мл физиологического стерильного раствора.

В условиях ламинарного бокса с жестким соблюдением правил асептики и антисептики проводят осаждение бактерий на стерильных нитроцеллюлозных бактериальных фильтрах с фильтрующей поверхностью 25 мм и диаметром пор 0,22 мкм, используя фильтровальную установку с разрежением 150 мм рт.ст. Каждый образец смывов (200 мл) фильтруют через один фильтр. Количество фильтров определяется количеством проб, взятых на анализ. Далее фильтры стерильно переносят в пробирки типа «Эппендорф» с 1 мл сверхчистой воды, предварительно измельчив их стерильным скальпелем. Выделение тотальной ДНК для полимеразной цепной реакции проводят по методике, описанной G.G.Stone (1994). Эппендорфы с фильтрами прогревают 10 минут при температуре 97°С в твердофазном термостате «Термит», центрифугируют в течение 10 минут при 10000 об/мин, супернатант переносят в другую пробирку. Для концентрирования ДНК осаждают изопропанолом (1:1), центрифугируют 10 минут при 13000 об/мин, удаляют супернатант, подсушивают, осадок растворяют в 25 мкл ТЕ (10 мМ трис-HCl, 1 мМ ЭДТА) и используют для генетических исследований. Хранение образцов при температуре -18°С.

Молекулярно-генетические исследования осуществляют путем ПЦР (specific PCR) с использованием праймеров (таблица), комплементарных специфической последовательности ДНК, характерной для строго определенного вида микроорганизмов (Pseudomonas aeruginosa, Acinetobacter baumanii и др.) и универсальных праймеров, которые позволяют амплифицировать фрагменты генов, присутствующих у всех микроорганизмов определенной таксономической группы (Pseudomonas, Klebsiella и др.).

Праймеры для ПЦР-анализа генов 16S РНК наиболее значимых представителей грамотрицательных бактерий - возбудителей ВБИ (F. Widmer et.al., 1998; Т.Spilker, Т.Coenye, 2004; J.F.Turton et.al., 2005).
Микроорганизм Праймер Последовательность Фрагмент, п.н.
Pseudomonas spp. Ps-forggtctgagaggatgatcagt 969
Ps-rev ttagctccacctcgcggc
P. aeruginosaPA-SS-F gggggatcttcggacctca 956
PA-SS-R tccttagagtgcccacccg
A. baumanniiAcinetF gaaggtagcttgctac 410
AcinetR actatctctaggtattaactaaagt

Режим амплификации для праймеров AcinetF/AcinetR начальный цикл денатурации - 2 мин при 94°С, следующие 35 циклов: 94°С - 30 с; 50°С - 60 с; 72°С - 90 с и завершающий цикл - 5 мин при 72°С; для праймеров Ps-for/Ps-rev начальный цикл денатурации - 5 минут при 95°С, следующие 40 циклов: 94°С - 30 с; 65°С - 60 с; 72°С - 70 с, завершающий цикл - 10 мин при 72°С; для праймеров PA-SS-F/PA-SS-R начальный цикл денатурации - 2 мин при 95°С, далее 35 циклов: 94°С - 20 сек; 58°С - 20 сек; 72°С - 40 сек. Завершающий цикл 1 мин при 72°С.

Электрофоретическое разделение продуктов реакции проводили в 1,2% агарозном геле в трис-боратном буфере при напряженности электрического поля 6 В/см. Визуализацию полос и документирование данных осуществляли после окрашивания геля бромистым этидием с использованием системы гель-документации BioDocAnalyze («Biometra», Германия).

Для подтверждения эффективности предлагаемого способа генетического контроля микробной обсемененности объектов внешней среды в медицинских учреждениях проведено 10 исследований в двух крупных клиниках г.Перми.

Примеры практического применения:

Пример 1

Осуществлен контроль обсемененности объектов внешней среды грамотрицательными неферментирующими бактериями в общем отделении краевой инфекционной больницы г.Перми. Пробы были взяты со следующих объектов: № 1 - обеденный стол и кровать в палате отделения; № 2 - стол для забора анализов в общем коридоре, № 3 - стол в процедурном кабинете.

Проведен ПЦР-анализ ДНК, полученной из проб вышеописанным способом с родо- и видоспецифичными праймерами к генам 16S РНК Pseudomonas spp. и А. baumannii.

Путем амплификации с праймерами Ps-for/Ps-rev детектированы фрагменты, соответствующие размеру гена 16S РНК бактерий рода Pseudomonas (фиг.1). Одновременно был проведен бактериологический контроль в соответствии с приложением № 2 к Приказу Минздрава № 720. Для выделения стафилококков сделан посев непосредственно на чашку Петри с желточно-солевым агаром бактерий группы кишечных палочек - в 10-20% желчный бульон с последующим пересевом на среду Эндо. Для выявления синегнойной палочки - прямые посевы на кровяной агар и на среду Эндо. Бактериологическое исследование на синегнойную палочку отрицательное. Таким образом, с помощью молекулярно-генетического анализа установлено, что в смыве, взятом с поверхности стола в процедурном кабинете отделения, присутствуют бактерии рода Pseudomonas.

Пример 2

Проведен контроль обсемененности объектов внешней среды в хирургическом отделении областной краевой больницы г.Перми. Пробы взяты со следующих объектов: № 1 - интубационная трубка аппарата для искусственной вентиляции легких (ИВЛ); № 2 - операционный стол, № 3 - кровать в палате интенсивной терапии.

Амплификация с праймерами Ps-for/Ps-rev и PA-SS-F/PA-SS-R дала положительный результат с материалом из пробы № 1, который был получен в течение одного рабочего дня (8 часов). Бактериологическое исследование подтвердило наличие в смыве бактерий Р. aeruginosa, однако на его проведение потребовалось 3 дня (72 часа).

Пример 3. Проведен контроль обсемененности грамотрицательными неферментирующими бактериями объектов внешней среды в палате интенсивной терапии КИБ № 1 г.Перми. Пробы были взяты со следующих объектов: № 1 - кровать; № 2 - тумбочка, № 3 - подоконник, № 4 - умывальник; № 5 - судно.

Генетическое исследование осуществляли аналогичным способом с тремя видами праймеров. Бактериологическое исследование на синегнойную палочку и ацинетобактеры - отрицательное. В пробе № 4 и № 5 обнаружены фрагменты ДНК, кодирующие ген 16S РНК A. baumannii.

Положительный эффект заявляемого способа состоит в более качественном контроле бактериальной обсемененности объектов окружающей среды в медицинских учреждениях, при этом учитываются некультивируемые формы микроорганизмов, которые при определенных условиях могут вызвать внутрибольничное инфицирование, но не выявляются с помощью существующего бактериологического метода.

Класс C12Q1/68 использующие нуклеиновые кислоты

способ идентификации вызывающих муковисцидоз мутаций в гене cftr человека, набор праймеров, биочип, набор мишеней и тест-система, используемые в способе -  патент 2529717 (27.09.2014)
аптамер, специфичный к опухолевым тканям легкого человека -  патент 2528870 (20.09.2014)
способ выявления микобактерий туберкулеза генотипа веijing в режиме реального времени -  патент 2528866 (20.09.2014)
способ проведения пцр и пцр-пдрф для идентификации аллельных вариантов waxy-генов пшеницы -  патент 2528748 (20.09.2014)
синтетические олигонуклеотидные праймеры для идентификации вируса блютанга нуклеотипа в (3, 13 и 16 серотипы) методом от-пцр -  патент 2528745 (20.09.2014)
способ проведения пцр-пдрф для генотипирования крупного рогатого скота по аллелям а и к гена dgat1 -  патент 2528743 (20.09.2014)
синтетические олигонуклеотидные праймеры и способ выявления генотипов для идентификации личности с помощью системы микросателлитных днк-маркеров y-хромосомы -  патент 2528742 (20.09.2014)
способ оценки чувствительности клеток рака легкого к доксорубицину на основании уровней экспрессии маркерных генов и набор для его осуществления -  патент 2528247 (10.09.2014)
биологический микрочип для выявления и многопараметрического анализа противохолерных антител -  патент 2528099 (10.09.2014)
набор синтетических олигонуклеотидов для амплификации и секвенирования its1-5.8s-its2 сосудистых растений -  патент 2528063 (10.09.2014)
Наверх