способ получения хлора окислением хлористого водорода

Классы МПК:C01B7/04 получение хлора из хлористого водорода
B01J23/22 ванадий
B01J23/04 щелочные металлы
B01J27/10 хлориды
Автор(ы):, ,
Патентообладатель(и):Институт химии и химической технологии СО РАН (RU)
Приоритеты:
подача заявки:
2008-04-28
публикация патента:

Изобретение относится к технологии производства галогенов и может быть использовано в химической промышленности. Способ получения хлора включает окисление хлористого водорода при 270-370°С молекулярным кислородом в присутствии катализатора на основе ванадиевого ангидрида. В качестве компонентов катализатора используют хлориды калия и лития при следующем соотношении, мас.% от общей массы катализатора: KCl - 4-52, LiCl - 3-43, V2O 5 - 15-85. Изобретение позволяет повысить скорость окисления хлористого водорода и снизить температуру процесса.

Формула изобретения

Способ получения хлора окислением хлористого водорода молекулярным кислородом в присутствии катализатора на основе ванадиевого ангидрида, отличающийся тем, что процесс проводят при 270-370°С, а в качестве компонентов катализатора используют хлориды калия и лития в следующем соотношении, мас.% от общей массы катализатора:

KCl4-52
LiCl 3-43
V 2O5 15-85

Описание изобретения к патенту

Изобретение относится к области технологии производства галогенов и получения хлорорганических соединений. В этих областях, как и в других технологиях, возникает задача регенерации молекулярного хлора окислением хлористого водорода, отхода различных производств. Применение электролиза для этих целей дорого и непроизводительно.

Известен способ получения хлора окислением хлористого водорода молекулярным кислородом в присутствии катализаторов на основе хлорида меди при 400-450°С (процесс Дикона [US 85370, 1868]). Его недостатки заключаются в низкой активности катализатора и высокой температуре проведения процесса, при которой равновесие процесса окисления сдвинуто в сторону исходных реагентов. Это приводит к образованию сложной смеси целевого продукта, хлора, с исходными реагентами - хлористым водородом и кислородом. Выделение хлора из этой смеси технологически сложно.

Известен способ получения хлора окислением хлористого водорода молекулярным кислородом в присутствии катализаторов на основе оксида хрома при 350-450°С [US 4774070, 1988]. В соответствии с известным способом смесь хлористого водорода и кислорода пропускают через слой оксидно-хромового катализатора. Способ характеризуется высокой производительностью, до 660 г хлора на 1 кг катализатора в час, но при 350°С скорость процесса падает до 220 г хлора на 1 кг катализатора в час. В результате основной недостаток известного способа заключается в сложности выделения целевого продукта из получаемой при высоких температурах смеси его с реагентами.

Известен способ получения хлора окислением хлористого водорода молекулярным кислородом в присутствии катализатора на основе оксида рутения при 400-450°С [US 6713035]. В соответствии с известным способом смесь хлористого водорода и кислорода пропускают через слой катализатора на основе оксида рутения. Способ характеризуется высокой производительностью, но основной недостаток известного способа заключается в высокой стоимости каталитически активного компонента, диоксида рутения.

Наиболее близким по существу к заявляемому изобретению является способ получения хлора окислением хлористого водорода молекулярным кислородом в присутствии катализатора на основе ванадиевого ангидрида, пиросульфатов и сульфатов натрия и калия при 400-450°С [US 4269817, 1981]. В соответствии с известным способом хлористый водород и кислород поочередно или их смесь пропускают через расплав катализатора, состоящего из 2-25 мас.% ванадиевого ангидрида и пиросульфатов и сульфатов натрия и калия. Способ характеризуется производительностью до 10-20 г хлора на 1 кг катализатора в час при 375-525°С, а при понижении температуры скорость процесса резко падает и катализатор теряет активность.

Известный способ имеет следующие недостатки:

- Высокая, более 375°С, рабочая температура процесса и низкая концентрация целевого продукта в получаемой смеси (13-26 об.% при использовании смеси хлористого водорода и воздуха).

- Низкая производительность процесса, 10-20 г хлора на 1 кг катализатора в час.

Отмеченные недостатки известного способа обусловлены его существенными признаками - использованием расплава ванадиевого ангидрида и пиросульфатов натрия и калия в качестве катализатора.

Цель предлагаемого изобретения - повышение скорости процесса окисления хлористого водорода и увеличение содержания хлора в получаемой после окисления газовой смеси продуктов.

Поставленная цель достигается тем, что согласно заявляемому изобретению молекулярный хлор получают окислением хлористого водорода кислородом в присутствии катализатора на основе ванадиевого ангидрида и хлоридов калия и лития. Применение более активного по сравнению с используемым в известном способе катализатора делает заявляемый способ на порядок более производительным по сравнению с прототипом.

Кроме того, катализатор, используемый в соответствии с предлагаемым способом, достаточно активен при сравнительно низких температурах, 270-370°С, при которых как ванадий-пиросульфатный катализатор, так и другие известные системы каталитически неактивны. Снижение температуры процесса ниже 400°С смещает равновесие процесса окисления хлористого водорода в сторону продуктов, т.е. концентрация хлора в реакционной смеси возрастает. При 400°С константа равновесия составляет 120, в то время как при 270°С - 16600. Таким образом, использование отличительного признака изобретения, катализатора на основе ванадиевого ангидрида, хлоридов калия и лития, позволяет повысить концентрацию целевого продукта в реакционной смеси за счет понижения температуры процесса окисления.

Отличительными признаками предлагаемого изобретения являются:

1. Использование хлоридов калия и лития в качестве компонентов катализатора на основе ванадиевого ангидрида для проведения процесса окисления хлористого водорода.

2. Применение более низких температур окисления (270-370°С).

Общие признаки предлагаемого пособа и прототипа - окисление хлористого водорода молекулярным кислородом в присутствии катализаторов на основе ванадиевого ангидрида.

Технический результат предлагаемого изобретения заключается в повышении скорости окисления хлористого водорода от 10 до 25 раз и увеличении константы равновесия процесса за счет снижения температуры.

Названные отличительные признаки обуславливают достижение технических результатов предлагаемого изобретения: повышение скорости окисления хлористого водорода от 10 до 25 раз и увеличение константы равновесия окисления хлороводорода в молекулярный хлор на один - два порядка за счет снижения температуры.

Технический результат предлагаемого изобретения наблюдается при использовании в качестве катализатора гранулированной смеси ванадиевого ангидрида и хлоридов калия и лития с содержанием, мас.: V2O5 - 15-85, KCl - 4-52, LiCl - 3-43. При содержаниях ванадия в гранулированном катализаторе, меньших названного количества, его активность падает практически до нуля вследствие низкой концентрации активного компонента. При содержаниях ванадия в гранулированном катализаторе, больших названного количества, его активность падает ниже показателей прототипа вследствие низкой активности чистого ванадиевого ангидрида в разрабатываемом процессе. Если содержание одного из хлоридов выходит за пределы указанных диапазонов, то активность катализатора также падает ниже показателей прототипа.

Способ подтверждается конкретными примерами.

Пример 1. Для синтеза катализатора-1 процесса было взято 5,456 г V 2O5 (х.ч.), 1,009 г LiCl (ч.д.а.) и 1,208 г KCl (х.ч.). Соотношение компонентов смеси V2O 5: LiCl:KCl=71 мас.%:13 мас.%:16 мас.% соответственно. Смесь перетиралась в ступке и прокаливалась в стеклянной пробирке при 370°С в течение трех часов. При спекании ванадиевого ангидрида и указанных солей наблюдалось активное выделение Cl 2. Спекшаяся масса коричневого цвета подвергалась дроблению, размолу и просеиванию. Таким образом, была отобрана фракция с размером частиц от 0,63 до 1,00 мм. 1 г полученного катализатора-1 загружали в U-образную трубку с внутренним диаметром 6 мм.

Для приготовления реакционной газовой смеси 200 мл HCl (концентрация - 34%, p=1,17 г/см3) поместили в стеклянную пробирку с газоотводом, где создавался небольшой вакуум. Через слой HCl при Т=50°С барбатировался атмосферный воздух. Газовая смесь содержала 33 об.% HCl, 3,3 об.% H2O и 63,7 об.% воздуха.

Полученную газовую смесь подавали в U-образную трубку и пропускали через слой катализатора 270°С. Продолжительность процесса составляла 1 час. Выделяющаяся после реакции газовая смесь поступала в склянку, наполненную 1 М раствором KI, где происходило поглощение Cl2. Раствор иодида калия постепенно приобретал коричневую окраску за счет выделяющегося I2. Количество образующегося I2 определяли прямым титрованием тиосульфатом натрия в присутствии коллоидного раствора крахмала в качестве индикатора.

Производительность полученного катализатора при 270°С составила 60 г Cl2 на 1 кг катализатора в час.

Пример 2. Приготовление катализатора-1, газовой смеси и анализ выделяющихся газов проводили так же, как описано в примере 1.

Полученную газовую смесь подавали в U-образную трубку и пропускали через слой катализатора при нагревании. Т=320°С. Продолжительность процесса составляла 1 час.

Производительность катализатора-1 при 320°С составила 125 г Cl2 на 1 кг катализатора в час.

Пример 3. Приготовление катализатора-1, газовой смеси и анализ выделяющихся газов проводили так же, как описано в примере 1.

Полученную газовую смесь подавали в U-образную трубку и пропускали через слой катализатора при нагревании. Т=370°С. Продолжительность процесса составляла 1 час.

Производительность катализатора при 370°С составила 240 г Cl2 на 1 кг катализатора в час.

Пример 4. Для синтеза катализатора-2 процесса было взято 0,4 г V2O5 (х.ч.), 1,009 г LiCl (ч.д.а.) и 1,208 г KCl (х.ч.). Соотношение компонентов смеси V2 O5:LiCl:KCl=15 мас.%:39 мас.%:46 мас.% соответственно. Технология приготовления катализатора, рабочей газовой смеси, а также анализ продуктов реакции, как в примере 1.

Полученную газовую смесь подавали в U-образную трубку и пропускали через слой катализатора при нагревании. Т=370°С. Продолжительность процесса составляла 1 час. Производительность полученного катализатора-2 при 370°С составила 27 г Cl2 на 1 кг катализатора в час.

Пример 5. Для синтеза катализатора-3 процесса было взято 12,5 г V2O5 (х.ч.), 1,009 г LiCl (ч.д.а.) и 1,208 г KCl (х.ч.). Соотношение компонентов смеси V2O5:LiCl:KCl=85 мас.%:7 мас.%:8 мас.% соответственно. Технология приготовления катализатора, рабочей газовой смеси, а также анализ продуктов реакции описаны в примере 1.

Полученную газовую смесь подавали в U-образную трубку и пропускали через слой катализатора при 370°С. Продолжительность процесса составляла 1 час. Производительность полученного катализатора-3 при 370°С составила 31 г Cl2 на 1 кг катализатора в час.

Пример 6. Для синтеза катализатора-4 процесса было взято 12,5 г V2O5 (х.ч.), 1,009 г LiCl (ч.д.а.) и 1,208 г KCl (х.ч.). Соотношение компонентов смеси V2O5:LiCl:KCl=85 мас.%:7 мас.%:8 мас.% соответственно. Технология приготовления катализатора, рабочей газовой смеси, а также анализ продуктов реакции, как в примере 1.

Полученную газовую смесь подавали в U-образную трубку и пропускали через слой катализатора при 370°С. Продолжительность процесса составляла 1 час. Производительность полученного катализатора-4 при 370°С составила 33 г Cl2 на 1 кг катализатора в час.

Пример 7. Для синтеза катализатора-5 процесса было взято 5,456 г V2O5 (х.ч.), 1,009 г LiCl (ч.д.а.) и 3,0424 г KCl (х.ч.). Соотношение компонентов смеси V2O5:LiCl:KCl=57 мас.%:11 мас.%:32 мас.% соответственно. Технология приготовления катализатора, рабочей газовой смеси, а также анализ продуктов реакции описаны в примере 1.

Полученную газовую смесь подавали в U-образную трубку и пропускали через слой катализатора при нагревании. Т=370°С. Продолжительность процесса составляла 1 час. Производительность полученного катализатора-5 при 370°С составила 49 г Cl2 на 1 кг катализатора в час.

Пример 8. Для синтеза катализатора-6 процесса было взято 5,456 г V2O5 (х.ч.), 0,2061 г LiCl (ч.д.а.) и 1,208 г KCl (х.ч.). Соотношение компонентов смеси V2O5:LiCl:KCl=79 мас.%:3 мас.%:18 мас.%. Технология приготовления катализатора, рабочей газовой смеси, а также анализ продуктов реакции описаны в примере 1.

Полученную газовую смесь подавали в U-образную трубку и пропускали через слой катализатора при нагревании. Т=370°С. Продолжительность процесса составляла 1 час. Производительность полученного катализатора-6 при 370°С составила 34 г Cl2 на 1 кг катализатора в час.

Пример 9. Для синтеза катализатора-7 процесса было взято 5,456 г V2O5 (х.ч.), 2,3414 г LiCl (ч.д.а.) и 1,208 г KCl (х.ч.). Соотношение компонентов смеси V2O5:LiCl:KCl=61 мас.%:26 мас.%:13 мас.%. Технология приготовления катализатора, рабочей газовой смеси, а также анализ продуктов реакции описаны в примере 1.

Полученную газовую смесь подавали в U-образную трубку и пропускали через слой катализатора при нагревании. Т=370°С. Продолжительность процесса составляла 1 час. Производительность полученного катализатора при 370°С составила 79 г Cl 2 на 1 кг катализатора-7 в час.

Класс C01B7/04 получение хлора из хлористого водорода

способ извлечения хлора из отходов в производстве хлора и винилхлорида -  патент 2498937 (20.11.2013)
способ регенерации содержащего рутений или соединения рутения катализатора, отравленного серой в виде сернистых соединений -  патент 2486008 (27.06.2013)
устойчивый к воздействию температуры катализатор для окисления хлороводорода в газовой фазе -  патент 2486006 (27.06.2013)
способ получения хлора из хлороводорода с помощью вольфрамсодержащих соединений -  патент 2485046 (20.06.2013)
способ получения хлора каталитическим окислением хлористого водорода и способ получения изоцианатов -  патент 2480402 (27.04.2013)
способ получения хлора окислением в газовой фазе -  патент 2475447 (20.02.2013)
катализатор и способ изготовления хлора путем окисления хлороводорода в газовой фазе -  патент 2469790 (20.12.2012)
способ получения серы из сероводорода -  патент 2448040 (20.04.2012)
способ конверсии хлороводорода для получения хлора -  патент 2448038 (20.04.2012)
каталитическая система для гетерогенных реакций -  патент 2446877 (10.04.2012)

Класс B01J23/22 ванадий

каталитическая система и способ гидропереработки тяжелых масел -  патент 2525470 (20.08.2014)
катализатор окисления ртути и способ его приготовления -  патент 2493908 (27.09.2013)
каталитический элемент для осуществления гетерогенно-каталитических реакций -  патент 2489209 (10.08.2013)
смешанные металлооксидные катализаторы и способ каталитической конверсии низших алифатических углеводородов -  патент 2476265 (27.02.2013)
способ приготовления катализатора, состоящего из носителя и нанесенной на поверхность носителя каталитически активной массы -  патент 2464085 (20.10.2012)
ванадиевый катализатор окисления хлористого водорода в хлор молекулярным кислородом -  патент 2440927 (27.01.2012)
способ регенерации катализатора для обработки отходящего газа и катализатор для обработки отходящего газа, полученный этим способом -  патент 2436628 (20.12.2011)
биметаллические катализаторы алкилирования -  патент 2419486 (27.05.2011)
способ получения хлора каталитическим окислением хлористого водорода молекулярным кислородом -  патент 2417945 (10.05.2011)
способ получения хлора каталитическим окислением хлористого водорода -  патент 2409516 (20.01.2011)

Класс B01J23/04 щелочные металлы

способ приготовления катализатора для окислительной конденсации метана, катализатор, приготовленный по этому способу, и способ окислительной конденсации метана с использованием полученного катализатора -  патент 2515497 (10.05.2014)
способ определения устойчивости катализатора для дегидрирования алкилароматических углеводородов -  патент 2508163 (27.02.2014)
способ получения катализатора -  патент 2498852 (20.11.2013)
катализатор для применения в высокотемпературной реакции сдвига и способ обогащения смеси синтез-газа водородом или монооксидом углерода -  патент 2498851 (20.11.2013)
катализатор дегидрирования метанола, используемый для получения метилформиата, и способ получения метилформиата -  патент 2489208 (10.08.2013)
способ получения катализатора для очистки воды от загрязнения углеводородами -  патент 2479349 (20.04.2013)
катализатор и способ конвертации природного газа в высокоуглеродистые соединения -  патент 2478426 (10.04.2013)
способ получения титанатного фотокатализатора, активного в видимой области спектра -  патент 2466791 (20.11.2012)
материал для покрытия с каталитической активностью и применение материала покрытия -  патент 2466163 (10.11.2012)
катализатор дегидрирования, способ его получения и способ получения олефиновых углеводородов c2-c5 с использованием этого катализатора -  патент 2463109 (10.10.2012)

Класс B01J27/10 хлориды

способ приготовления катализатора для получения 3-ацетилгептан-2,6-диона и способ получения 3-ацетилгептан-2,6-диона с использованием полученного катализатора -  патент 2494810 (10.10.2013)
способ каталитического риформинга бензиновых фракций -  патент 2471855 (10.01.2013)
катализатор, способ его приготовления и способ получения этилена -  патент 2438775 (10.01.2012)
способ получения хлора каталитическим окислением хлористого водорода молекулярным кислородом -  патент 2417945 (10.05.2011)
компоненты катализатора для полимеризации олефинов -  патент 2417838 (10.05.2011)
катализатор окислительной демеркаптанизации нефти и нефтяных дистиллятов и способ его получения -  патент 2408426 (10.01.2011)
каталитический способ переработки метана -  патент 2394805 (20.07.2010)
способ реформинга с использованием катализатора высокой плотности -  патент 2388534 (10.05.2010)
катализатор, основанный на перовските, способ его изготовления и применения для целей конверсии метана в этилен -  патент 2350384 (27.03.2009)
катализатор дегидрирования 4,5,6,7-тетрагидроиндола в индол и способ его получения -  патент 2345066 (27.01.2009)
Наверх