жидкость для глушения и заканчивания скважин
Классы МПК: | C09K8/42 составы для цементирования, например для цементирования обсадных труб буровых скважин; составы для закупоривания, например для глушения скважин |
Автор(ы): | Рябоконь Сергей Александрович (RU), Бурдило Раиса Яковлевна (RU), Жабин Сергей Васильевич (RU), Сваровская Лариса Северьяновна (RU) |
Патентообладатель(и): | Рябоконь Сергей Александрович (RU), Бурдило Раиса Яковлевна (RU), Жабин Сергей Васильевич (RU), Сваровская Лариса Северьяновна (RU) |
Приоритеты: |
подача заявки:
2008-07-16 публикация патента:
20.01.2010 |
Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для глушения и заканчивания высокотемпературных скважин с аномально низкими пластовыми давлениями АНПД. Технический результат - термостабильность жидкости при температуре до 130°С, высокая вязкость, седиментационная устойчивость, недефицитность и низкая стоимость используемых материалов. Жидкость для глушения и заканчивания скважин содержит, мас.%: углеводородную основу 46-68, смесь кислот 14,1-18, каустическую соду 8-13, карбонат кальция - остальное, при этом смесь кислот имеет следующий состав, мас.%: циклическая кислота 90-97, натуральная или синтетическая жирная кислота 3-10. Жидкость дополнительно может содержать органобентонит. 1 з.п. ф-лы, 2 табл.
Формула изобретения
1. Жидкость для глушения и заканчивания скважин, содержащая углеводородную основу, жирную кислоту, минеральный наполнитель - карбонат кальция, отличающаяся тем, что в смеси с жирной кислотой содержит циклическую кислоту и дополнительно содержит каустическую соду при следующих соотношениях компонентов, мас.%:
углеводородная основа | 46-68 |
смесь кислот | 14,1-18 |
каустическая сода | 8-13 |
указанный минеральный наполнитель | остальное |
при этом смесь кислот имеет следующий состав, мас.%:
циклическая кислота | 90-97 |
натуральная или синтетическая жирная кислота | 3-10 |
2. Жидкость по п.1, отличающаяся тем, что дополнительно содержит органобентонит.
Описание изобретения к патенту
Изобретение относится к нефтегазодобывающей промышленности и может быть использовано, в частности, для глушения и заканчивания высокотемпературных скважин с АНПД.
Известна жидкость для заканчивания и капитального ремонта скважин, содержащая, мас.%: углеводородную основу - 61,0-89,0, натуральную жирную кислоту 2,0-4,7, каустическую соду - 2,1-4,0, минеральный наполнитель - карбонат кальция - остальное (см. RU № 2253664, 21.10.2003 г.).
При использовании такой жидкости в скважинах с температурой выше 80°С физические связи образованных мицеллярных структурных агрегатов оказываются недостаточными для образования прочной структурной сетки, система становится неустойчивой, а жидкость - непригодной для глушения.
Известна термостабильная (до 120°С) жидкость для заканчивания и глушения скважин, содержащая углеводородную основу, нафтенат натрия, жирные кислоты, минеральный наполнитель - природный карбонат кальция (см. RU № 2201498, 03.09.2001 г.).
Однако при использовании в качестве углеводородной основы нефтей, имеющих в своем составе природные высокомолекулярные ПАВ, такие как парафины, смолы, асфальтены, структура известной жидкости теряет свою термостабильность и прочность, и применение ее в высокотемпературных скважинах становится невозможным.
Задачей изобретения является разработка жидкости на углеводородной основе, сохраняющей высокую вязкость и стабильность при повышенных температурах, приготовленной с использованием дешевых недефицитных материалов, для глушения и заканчивания скважин с температурой до 130°С.
Указанная задача решается тем, что жидкость для глушения и заканчивания скважин, содержащая углеводородную основу, жирную кислоту, минеральный наполнитель - карбонат кальция, в смеси с жирной кислотой содержит циклическую кислоту и дополнительно содержит каустическую соду при следующих соотношениях компонентов, мас.%:
углеводородная основа - 46,0-68,0
смесь кислот - 14,1-18
каустическая сода - 8-13
указанный минеральный наполнитель - остальное,
при этом смесь кислот имеет следующий состав, мас.%:
циклическая кислота - 90-97
жирная кислота - 3-10.
Жидкость для глушения и заканчивания скважин может дополнительно содержать органобентонит.
Совокупность заявляемых компонентов в предлагаемом изобретении обеспечивает новый технический результат - образование структуры, устойчивой при температуре до 130°С. Использование смеси кислот с разным пространственным строением в заявляемом соотношении более эффективно, чем каждой из них в отдельности, что объясняется синергетическим эффектом межмолекулярного взаимодействия их друг с другом и с компонентами состава, в результате которого получаются ПАВы с разным механизмом поведения в жидкости, следствием чего является повышение вязкости жидкости, обеспечивающей минимальное повреждение продуктивного пласта скважины. Взаимное влияние компонентов жидкости, выраженное во взаимодействии молекул низко- и высокомолекулярных соединений, приводит к образованию ассоциатов большой молекулярной массы и к упрочнению ее пространственной структуры при высоких температурах.
Ввод органобентонита в сформировавшуюся структуру позволяет дополнительно увеличить стабильность системы.
В качестве углеводородной основы жидкость содержит нефть, продукты ее переработки, газовый конденсат. В качестве циклической кислоты содержит нафтеновую или кубовые остатки переработки древесины. В качестве жирной кислоты - отходы производства растительных и животных жиров или синтетическую жирную кислоту.
Смесь кислот получают смешиванием разогретой до t=60°C жирной кислоты с циклической кислотой в заявляемом соотношении в течение 1 часа. В результате смешения получается подвижная густая жидкость темно-коричневого цвета, которая легко смешивается с углеводородной фазой в процессе приготовления.
Примеры осуществления изобретения.
Пример 1 (табл.1, 2, состав 2)
К 54 мл (46 г) нефти № 1 при температуре 20°С добавляли 16,5 г смеси кислот, приготовленной из 90 г нафтеновой и 10 г натуральной жирной кислоты, перемешивали в течение 20 минут, затем в полученный раствор добавляли 6 мл (8 г) 30% водного раствора каустической соды (NAOH). Смесь перемешивали 10 минут с добавлением 1,0 г органобентонита. Перемешивание продолжали до образования гелеобразного раствора, затем в раствор вводили 28,5 г карбоната кальция до получения расчетной плотности.
Пример 2 (табл.1, 2, состав 3)
Жидкость готовили аналогично примеру 1 из 58,9 мл (50 г) нефти № 2, 17,3 г смеси кислот, приготовленной из 90 г кубовых остатков переработки древесины и 10 г натуральной жирной кислоты, 6,4 мл (8,5 г) NAOH, 1,2 г органобентонита с получением расчетной плотности добавлением 23 г карбоната кальция.
Пример 3 (табл.1, 2, состав 4)
Жидкость готовили аналогично примеру 1 из 61 мл (52 г) нефти № 3, 18 г смеси кислот, приготовленной из 93 г нафтеновой и 7 г синтетической жирной кислоты, 6,8 мл (9 г) NAOH, 1,0 г органобентонита, с получением расчетной плотности добавлением 20 г карбоната кальция.
Пример 4 (табл.1, 2, состав 5)
Жидкость готовили аналогично примеру 1 из 83 мл (63 г) газового конденсата, 14,6 г смеси кислот, приготовленной из 97 г нафтеновой кислоты и 3 г синтетической жирной кислоты, 9,8 мл (13 г) NAOH с получением расчетной плотности добавлением 9,4 г карбоната кальция.
Пример 5 (табл.1, 2, состав 6)
Жидкость готовили аналогично примеру 1 из 83 мл (68 г) дизельного топлива, 14,1 г смеси кислот, приготовленной из 97 г нафтеновой кислоты и 3 г синтетической жирной кислоты, 6,4 мл (8,5 г) NAOH с получением расчетной плотности добавлением 9,4 г карбоната кальция.
Для сравнения с заявляемым составом провели замеры технологических параметров известной жидкости для глушения и заканчивания скважин (табл.2, состав 1).
Замер технологических параметров полученных растворов производили на стандартных приборах. Реологические характеристики измеряли на приборе Rheotest-2 и рассчитывали для значений градиента сдвига, равного 9 с-1. Термостабильность жидкостей оценивали прогревом их в лабораторных металлических автоклавах при температуре 130°С в течение 72 часов с последующим замером разности плотностей жидкости в верхней и нижней частях специального цилиндра ( = низ- верх, г/см3).
Таблица 2 | ||||
Состав | Параметры жидкости при t=80°C | Параметры жидкости после прогрева до t=130°С в течение 72 ч | ||
Эффектив. вязкость, сП, на v=9 с-1 | Статическое напряжение сдвига (СНС) 1/10, дПа | Статическое напряжение сдвига (СНС) 1/10, дПа | Седиментационная стабильность, г/см3 = низ- верх | |
1 | 1120 | 6/9 | 0/0 | расслоение |
2 | 1508 | 28/31 | 39/45 | 0,03 |
3 | 1893 | 34/45 | 45/48 | 0 |
4 | 1610 | 25/30 | 34/40 | 0 |
5 | 3020 | 57/62 | 74/80 | 0 |
6 | 2050 | 51/62 | 57/70 | 0 |
Анализ результатов замера технологических параметров известной и заявляемой жидкостей, представленных в таблицах, показал сохранение показателей структуры (СНС) заявляемой жидкости после прогрева до температуры 130°С, что характеризует способность жидкости удерживать минеральный наполнитель, вследствие чего седиментационная стабильность практически равна 0. Более высокие по сравнению с прототипом показания вязкости способствуют меньшему проникновению жидкости в пласт и полному восстановлению его продуктивности после проведения ремонтных работ.
Термостабильность жидкости при t=130°С, высокая вязкость, седиментационная устойчивость, недифицитность и низкая стоимость материалов отечественного производства позволяют широко использовать заявляемую жидкость в нефтяной промышленности.
Класс C09K8/42 составы для цементирования, например для цементирования обсадных труб буровых скважин; составы для закупоривания, например для глушения скважин