способ обработки поверхности стальных изделий
Классы МПК: | C23C10/22 металлический расплав, содержащий диффундирующий элемент |
Автор(ы): | Соколов Александр Григорьевич (RU), Крайнев Николай Андреевич (RU) |
Патентообладатель(и): | ГОУВПО Кубанский государственный технологический университет (RU) |
Приоритеты: |
подача заявки:
2008-01-22 публикация патента:
20.01.2010 |
Изобретение относится к технологиям, обеспечивающим повышение износостойкости поверхностей изделий, и может быть использовано при производстве изделий, работающих в условиях абразивного и гидроабразивного износа, сухого трения при высоких контактных напряжениях. Проводят диффузионное насыщение поверхностей изделий карбидообразующим элементом путем их погружения и выдержки в легкоплавком расплаве, содержащем карбидообразующий элемент, и термообработку при температуре 130-150°С в течение 4-5 часов. Получаются стальные изделия, обладающие высокой износостойкостью.
Формула изобретения
Способ обработки поверхностей стальных изделий, включающий диффузионное насыщение поверхностей изделий карбидообразующим элементом путем их погружения и выдержки в легкоплавком расплаве, содержащем карбидообразующий элемент, и проведение термообработки изделий, отличающийся тем, что термообработку проводят при температуре 130-150°С в течение 4-5 ч.
Описание изобретения к патенту
Изобретение относится к технологиям, обеспечивающим повышение износостойкости поверхностей изделий за счет изменения состава и структуры поверхностных слоев этих изделий, и может быть использовано для повышения износостойкости инструмента, изделий, работающих в условиях абразивного и гидроабразивного износа, сухого трения при высоких контактных напряжениях.
Известны способы повышения износостойкости изделий путем их азотирования, цементации, цианирования [Химико-термическая обработка металлов и сплавов: Справочник / Борисенок Г.В., Васильев Л.А., Ворошнин Л.Г. и др.]. Недостатком этих видов химико-термической обработки является невозможность достижения высокой твердости на поверхности изделий и, как следствие, их высокая износостойкость.
Известен также способ повышения износостойкости изделий за счет осаждения из газовой фазы покрытий на базе нитрида титана [Витязь П.А., Дубровская Г.Н., Кирилюк Л.М. Газофазное осаждение покрытий из нитрида титана. - Минск: Наука и техника, 1983. - 96 с.]. Данное покрытие обладает высокой твердостью, износостойкостью, но имеет и недостатки, связанные с высокой хрупкостью этого покрытия и слабой адгезионной связью покрытия с материалом изделия. Эти явления вызывают растрескивание и выкрашивание покрытий при высоких контактных напряжениях и термоциклировании.
Наиболее близким к заявляемому изобретению является способ диффузионного насыщения титаном из среды легкоплавких растворов [SU 1481263 А1, МПК С23С 10/22, 23.05.1989]. Нанесение покрытий данным способом осуществляется путем выдержки стального изделия в легкоплавком свинцовом или свинцово-висмутовом расплаве, содержащем в растворенном состоянии титан. В результате выдержки стального изделия в расплаве происходит адсорбция титана на поверхности изделия, а также диффузия титана в глубь изделия. При этом, так как титан является сильным карбидообразующим элементом, он забирает углерод из цементита стали и образует собственные карбиды, которые выделяются на поверхности изделия. Карбиды титана обладают очень высокой твердостью, что обеспечивает изделию высокую износостойкость.
Недостатком способа является то, что при образовании карбидов титана происходит отток углерода из стали, приводящий к образованию под поверхностным, износостойким слоем обезуглероженного слоя, обладающего низкой твердостью и прочностью. В результате этого при наличии механического воздействия на поверхность изделия происходит продавливание карбидного слоя, его деформация, растрескивание и выкрашивание. При этом твердые частицы покрытия могут приводить к еще более интенсивному износу трущихся поверхностей. Эта проблема рассматривалась в патенте RU № 2293792 C1 и решалась путем цементации изделия перед нанесением покрытия. Недостатками этого способа явились: высокотемпературный нагрев (до 1050°С), энергоемкость процесса, негативное влияние процесса цементации на структуру стали.
Задачей данного изобретения является повышение износостойкости стального изделия при больших контактных напряжениях.
Техническим результатом является исключение образования под износостойким карбидным слоем мягкого обезуглероженного слоя, снижающего износостойкость стального изделия.
Поставленная задача решается тем, что в заявляемом способе повышения износостойкости стальных изделий, включающем диффузионное насыщение поверхности стальных изделий карбидообразующими элементами, после нанесения покрытий изделие подвергают термообработке длительностью 4-5 часов при температуре 130-150°С.
При формировании покрытий на базе сильных карбидообразующих элементов под покрытием образуется мягкий обезуглероженный слой, который насыщается углеродом при последующей термообработке за счет углерода основного материала. Это объясняется тем, что за счет проведения последующей термообработки происходит увеличение концентрации углерода в обезуглероженном слое изделия за счет диффузии углерода из основного материала. Благодаря введению в технологический процесс стадии термообработки покрытых деталей (новой совокупности существенных признаков заявляемого изобретения) исключается продавливание карбидного слоя, его растрескивание и выкрашивание при механическом воздействии на изделие. Таким образом, происходит повышение износостойкости изделия, воспринимающего высокие контактные нагрузки.
Способ осуществляется следующим образом.
Пример 1. Ножовочные полотна для слесарной обработки металлов, изготовленные из стали Х6ВФ, подвергались диффузионному титанированию в среде легкоплавких растворов. При этом для оценки эффективности предлагаемой технологии диффузионное титанирование полотен проводилось как без последующей термообработки, так и с термообработкой покрытого изделия в соответствии с предлагаемым способом.
Диффузионное титанирование ножовочных полотен осуществлялось путем погружения и выдержки их в легкоплавком расплаве, состоящем из сплава, содержащего 55% свинца, 45% висмута, с 3% добавкой титана. Температура насыщения составляет 1100°С, продолжительность выдержки 0,5 часа. Термообработка проводилась при температуре 150°С с выдержкой 4 часа.
В результате нанесения титана на поверхности полотен образовалось покрытие, представляющее собой слой, состоящий из карбидов титана толщиной 3-5 мкм. На полотнах без термообработки под карбидным слоем наблюдается обезуглероженный слой толщиной 30-40 мкм, имеющий пониженную твердость. Так, если твердость основы составляла H50 5800 МПа, то обезуглероженного - Н50 4200 МПа, а покрытия - Н50 24000 МПа. При использовании предлагаемой технологии обезуглероженный слой под покрытием насытился углеродом основного материала до твердости Н50 5750 МПа, что исключило продавливание карбидного слоя при воздействии механической нагрузки на изделие.
Отсутствие обезуглероженного слоя у полотен, обработанных по предлагаемому способу, привело к повышению износостойкости ножовочных полотен до 10 раз.
Аналогичное повышение износостойкости наблюдается и при насыщении поверхности сталей вольфрамом, хромом и другими карбидообразующими элементами.
Таком образом, предложенный способ, включающий проведение термообработки после диффузионного насыщения поверхности стальных изделий карбидообразующими элементами, позволяет получить высокую износостойкость стальных изделий, испытывающих в процессе эксплуатации механические нагрузки, за счет исключения образовавшегося под твердым карбидным покрытием мягкого, обезуглероженного слоя.
Класс C23C10/22 металлический расплав, содержащий диффундирующий элемент