винтовентиляторный авиационный двигатель
Классы МПК: | F01D15/10 для привода электрических генераторов или комбинированные с ними F02K3/06 с передним расположением вентилятора |
Патентообладатель(и): | Болотин Николай Борисович (RU) |
Приоритеты: |
подача заявки:
2007-12-19 публикация патента:
20.01.2010 |
Винтовентиляторный авиационный двигатель содержит турбокомпрессор с корпусом, компрессором, камерой сгорания, выход из которой соединен газовым трактом с турбиной, и двухступенчатый винтовентилятор. Одна ступень винтовентилятора соединена с компрессором через магнитную муфту, а другая ступень винтовентилятора соединена с первой ступенью через реверсивный редуктор. Магнитная муфта содержит полумуфту, установленную в компрессоре, например, на его рабочих лопатках, и ведомую полумуфту, установленную на корпусе турбокомпрессора. Ступени винтовентилятора размещены внутри обтекателя. Изобретение направлено на повышение КПД и надежности авиационного двигателя. 2 з.п. ф-лы, 3 ил.
Формула изобретения
1. Винтовентиляторный авиационный двигатель, содержащий турбокомпрессор с корпусом, компрессором, камерой сгорания, выход из которой соединен газовым трактом с турбиной, и двухступенчатый винтовентилятор, отличающийся тем, что одна ступень винтовентилятора соединена с компрессором через магнитную муфту, а другая ступень винтовентилятора соединена с первой ступенью через реверсивный редуктор.
2. Винтовентиляторный авиационный двигатель по п.1, отличающийся тем, что магнитная муфта содержит полумуфту, установленную в компрессоре, например, на его рабочих лопатках и ведомую полумуфту, установленную на корпусе турбокомпрессора.
3. Винтовентиляторный авиационный двигатель по п.1 или 2, отличающийся тем, что ступени винтовентилятора размещены внутри обтекателя.
Описание изобретения к патенту
Изобретение относится к двигателестроению, в том числе к авиационным и стационарным двигателям.
Известна силовая установка по патенту РФ № 2189477, которая содержит газотурбинный двигатель - ГТД, газовый тракт, соединяющий этот газотурбинный двигатель со свободной турбиной и нагрузку в виде электрогенератора, вал которого подсоединен к валу свободной турбины через муфту.
Недостатком этой силовой установки является то, что она имеет низкий КПД около 20%, что почти в 2 раза меньше, чем у современных дизельных установок.
Недостатками этого двигателя является низкий КПД силовой установки.
Известен газотурбинный двигатель по патенту РФ № 2252316, который содержит турбокомпрессор, состоящий из компрессора, камеры сгорания и турбины, и не менее двух электрических машин (электрогенератор и электродвигатель), встроенных в турбокомпрессор. Система постоянных магнитов установлена на внутренней поверхности ротора турбокомпрессора, а статор электрической машины установлен на корпусе подшипниковой опоры, т.е. на малом диаметре.
Недостаток - низкая мощность электрогенератора и электродвигателя из-за их расположения на небольшом диаметре.
Известен газотурбинный двигатель по патенту Великобритании № 1341241, турбокомпрессор, состоящий из компрессора, камеры сгорания и турбины, и не менее двух электрических машин (электрогенератор и электродвигатель), встроенных в турбокомпрессор. Система постоянных магнитов установлена на внутренней поверхности ротора турбокомпрессора, а статор электрической машины установлен на корпусе подшипниковой опоры, т.е. на малом диаметре.
Недостатки этого двигателя: очень маленькая мощность электрических машин, связанная с тем, что они размещены на малом диаметре и имеют по одной ступени. Кроме того - возникают проблемы с охлаждением обмоток статора, размещенных внутри двигателя в зоне высоких температур, которая достигает для современных ГТД 1500°С. Большой электрический ток дополнительно нагревает обмотки электрогенератора и электродвигателя и делает проблему их охлаждения практически неразрешимой при расположении обмоток в зоне высоких температур. Такая конструкция применима для использования электрической машины в качестве стартера или в качестве вспомогательного электрогенератора для питания агрегатов газотурбинного двигателя и самолета. Кроме того, газотурбинный двигатель имеет низкий КПД (экономичность) и для его запуска требуется большая мощность стартера из-за инерционности его роторов.
Задачи создания изобретения: повышение мощности электрических машин, экономичности и надежности турбовинтового газотурбинного двигателя.
Решение указанных задач достигнуто за счет того, что винтовентиляторный авиационный двигатель, содержащий турбокомпрессор с корпусом, компрессором, камерой сгорания, выход из которой соединен газовым трактом с турбиной, и двухступенчатый винтовентилятор, отличающийся тем, что одна ступень винтовентилятора соединена с компрессором через магнитную муфту, а другая ступень винтовентилятора соединена с первой ступенью через реверсивный редуктор. Магнитная муфта выполнена на корпусе турбокомпрессора и содержит ведомую полумуфту, установленную в компрессоре, например, на его рабочих лопатках, и ведомую полумуфту, установленную на корпусе турбокомпрессора. Ступени винтовентилятора могут быть размещены внутри обтекателя.
Предложенное техническое решение обладает новизной, изобретательским уровнем и промышленной применимостью, что подтверждается проведенными патентными исследованиями. Для реализации изобретения достаточно применения известных узлов и деталей, ранее разработанных и реализованных в конструкции газотурбинных двигателей и в машиностроении.
Сущность изобретения поясняется на фиг.1 3, где:
на фиг.1 приведена схема винтовентиляторного газотурбинного авиационного двигателя,
на фиг.2 приведена схема двигателя с одной ступенью винтовентилятора,
на фиг.3 приведена схема двигателя с двумя ступенями винтовентилятора.
Предложенное техническое решение (фиг.1) содержит турбокомпрессор 1, содержащий компрессор 2, камеру сгорания 3 и турбину 4 и выхлопное устройство 5. Ротор 6 компрессора 2 соединен с валом 7 турбогенератора 1 (фиг.1 и 2).
Турбовинтовой авиационный газотурбинный двигатель (фиг.1) содержит систему топливоподачи с топливопроводом низкого давления 8, подключенным ко входу в топливный насос 9, имеющий привод 10, топливопровод высокого давления 11, вход которого соединен с топливным насосом 9, а выход соединен с кольцевым коллектором 12, кольцевой коллектор 12 соединен с форсунками 13 камеры сгорания 3.
Компрессор 2 содержит статор 14, опоры 15 и корпус 16, ротор 6 компрессора 2. Кроме того, компрессор 2 содержит направляющие лопатки 17 и образующие (вместе с дисками и валом) ротор 6 рабочие лопатки 18 компрессора.
Турбина 4 содержит статор 19 и ротор 20, который кинематически связан с валом 7 турбокомпрессора 1 и ротором 6 компрессора 2. Кроме того, турбина 4 содержит сопловые аппараты 21 и рабочие лопатки 22 (количество ступеней свободной турбины может быть от одной до нескольких).
Далее находятся опора 23 и выхлопное устройство 5.
В передней части турбокомпрессора 1 установлены две ступени винтовентилятора 24 и 25 (фиг.1 и 2), которые соединены через реверсивный редуктор 26. Винтовентилятор - устройство для нагнетания (сжатия) воздуха, занимает промежуточное положение между воздушным винтом и вентилятором. Применительно к авиационным двигателям винтом считается устройство, имеющее от 2-х до 4-х лопастей. Вентилятор имеет значительное число лопаток от 14 до 50 и более, т.е. он практически не отличается от осевого компрессора. Винтовентилятор имеет от 5 до 13 лопаток. Применение воздушного винта позволяет создать авиационный двигатель, имеющий высокую экономичность, но из-за большого диаметра имеет ограничения по скорости полета и создает большой уровень шума. Двухконтурный двигатель с вентилятором позволяет спроектировать ГТД для полетов на сверхзвуковых скоростях, но значительно уступает по экономичности двигателям, имеющим воздушные винты, например турбовинтовым газотурбинным двигателям. Применение винтовентиляторов является новейшим направлением в авиадвигателестроении и позволит объединить положительные свойства двух типов авиационных двигателей, описанных выше, и устранить все недостатки.
Первая ступень винтовентилятора 24 соединена с ротором 6 компрессора 2 посредством магнитной муфты 27, имеющей ведущую полумуфту 28 с ведущими магнитами 29 и ведомую полумуфту 30 с ведомыми магнитами 31. На ведомой полумуфте 30 закреплена первая ступень винтовентилятора 24. Вторая ступень винтовентилятора 25 соединена с первой ступенью винтовентилятора 24 посредством реверсивного редуктора 26 (фиг.2 и 3) и обеспечивает возможность их вращения в противоположные стороны. Противоположное вращение уменьшает рективный момент, действующий на крыло самолета, и гироскопический эффект, создающий радиальные нагрузки на подшипники двигателя.
Ступени винтовентилятора 24 и 25 могут быть установлены внутри обтекателя 32. Это позволит устранить радиальное перетекание воздуха и увеличить КПД двигателя. Кроме того, обтекатель снижает шум двигателя.
Вторая ступень винтовентилятора 25 смонтирована на ступице 33, а первая ступень винтовентилятора 24 смонтирована на ведомой полумуфте 30. Ведомая полумуфта 30 и ступица 33 установлены на подшипниках 34, не менее двух на каждую ступень. В осевом направлении подшипники 34 зафиксированы буртами 35 и 36, выполненными на корпусе турбокомпрессора 16 для передачи осевых сил.
Реверсивный редуктор (фиг.3) содержит ведущую шестерню 37, закрепленную на ведомой полумуфте 30, блок шестерен 38 и ведомую шестерню 39, соединенную со ступицей 33.
При работе винтовентиляторного авиационного газотурбинного двигателя осуществляют его запуск путем подачи электроэнергии на стартер от внешнего источника энергии (на фиг.1 3 не показано). Потом включают привод топливного насоса 10 и топливный насос 9 подает топливо в камеру сгорания 3, точнее в форсунки 13, где оно воспламеняется при помощи электрозапальника (на фиг.1 3 электрозапальник не показан). Турбина 4 раскручивается и раскручивает ротор компрессора 6. Через магнитную муфту 27 приводится в действие первая ступень винтовентилятора 24, а внешний источник энергии отключается. Потом через реверсивный редуктор 26 раскручивается вторая ступень винтовентилятора 25. Ступени винтовентилятора 24 и 25 создают дополнительную силу тяги, которая может быть больше силы тяги, создаваемой выхлопным устройством 5.
При останове винтовентиляторного авиационного газотурбинного двигателя все операции осуществляются в обратной последовательности. Необходимость в применении тяжелого и дорогостоящего редуктора, который применяется, например, на двигателе НК 12 MB, отпадает. Ступени винтовентилятора 24 и 25 (если в схеме двигателя применено две ступени винтовентилятора) вращаются в противоположные стороны с примерно одинаковыми частотами вращения.
Применение изобретения позволило:
1. Повысить КПД винтовентиляторного авиационного двигателя за счет более рациональной компоновки двигателя, наличия винтовентилятора, дающего дополнительную тягу, отсутствия жесткой кинематической связи между компрессором и винтовентилятором. Это позволило спроектировать оптимальные компрессор, воздушные винты и турбину, например, на разные рабочие обороты и оптимально согласовать их совместную работу.
2. Улучшить надежность винтовентиляторного авиационного двигателя за счет размещения магнитной муфты вне двигателя в зоне низких температур на компрессоре, предпочтительно ближе к его входу и на максимально возможном диаметре.
3. Облегчить запуск за счет раскрутки только ротора компрессора, без раскручивания винтовентилятора.
4. Облегчить условия работы винтовентилятора за счет отсутствия его механической связи с валом турбокомпрессора и возможности их взаимного проскальзывания и работы на различающихся частотах вращения.
5. Уменьшить вес и габариты двигателя за счет отсутствия редуктора между компрессором и винтовентилятором и применения более простого реверсивного редуктора между двумя ступенями винтовентилятора.
6. Обеспечить противоположное вращение ступеней винтовентиляторов.
Класс F01D15/10 для привода электрических генераторов или комбинированные с ними
Класс F02K3/06 с передним расположением вентилятора