установка ожижения диоксида углерода

Классы МПК:F25J1/00 Способы и устройства для сжижения или отверждения газов или их смесей
Автор(ы):, , , ,
Патентообладатель(и):ОАО "Тольяттиазот" (RU)
Приоритеты:
подача заявки:
2008-09-22
публикация патента:

Установка ожижения диоксида углерода включает центробежный компрессор, насос, парогенератор, конденсатор-испаритель и абсорбционную водоаммиачную холодильную машину. Процесс ожижения предварительно охлажденного диоксида углерода производится за счет двухступенчатого сжатия диоксида углерода в центробежном компрессоре и насосе, а также холода абсорбционной водоаммиачной холодильной машины и с одновременным производством пара в парогенераторе путем использования теплоты сжатия диоксида углерода в центробежном компрессоре с его подачей в абсорбционную водоаммиачную холодильную машину. Достигаемый технический результат - снижение энергозатрат на ожижение диоксида углерода. 1 ил.

установка ожижения диоксида углерода, патент № 2380629

Формула изобретения

Установка ожижения диоксида углерода, включающая центробежный компрессор, насос, парогенератор, конденсатор-испаритель и абсорбционную водоаммиачную холодильную машину, отличающаяся тем, что процесс ожижения предварительно охлажденного диоксида углерода производится за счет двухступенчатого сжатия диоксида углерода в центробежном компрессоре и насосе, а также холода абсорбционной водоаммиачной холодильной машины и с одновременным производством пара в парогенераторе путем использования теплоты сжатия диоксида углерода в центробежном компрессоре с его подачей в абсорбционную водоаммиачную холодильную машину.

Описание изобретения к патенту

Изобретение относится к технологическим линиям ожижения диоксида углерода и может найти применение на крупнотоннажных производствах, связанных с технологией получения карбамида.

Известны [Справочник азотчика. Т.2. - М.: Химия, 1969. - 444 с.]. установки компримирования газообразного диоксида углерода до давления 15 МПа перед подачей его в агрегат синтеза карбамида. Они создаются на базе поршневых или центробежных компрессоров, но могут быть комбинированными и использовать компрессоры разных типов, например, вначале для сжатия СO2 от 0,1 МПа до 3 МПа - центробежный компрессор, а затем для его окончательное сжатия от 3 МПа до 15 МПа - поршневой компрессор.

Недостатками известных установок являются высокие удельные затраты энергии на компримирование CO2. При его сжатии в одном компрессоре или группе компрессоров до 15 МПа они составляют 0,135-0,145 кВт·ч/кг СO2.

Наиболее близки по технической сущности к заявляемому изобретению компрессорно-холодильные установки для ожижения диоксида углерода [Пименова Т.Ф. // Производство и применение сухого льда, жидкого и газообразного диоксида углерода. - М.: Легкая и пищевая промышленность, 1982. - С.79-80]. При их использовании из газообразного СО2 можно получать жидкий диоксид углерода с температурой окружающей среды либо с более низкой, значение которой определяется давлением в изотермической емкости, предназначенной для сбора и хранения жидкого диоксида углерода.

Недостатками этих установок являются:

- получение жидкого диоксида углерода с температурой окружающей среды и давлениями 6,0-7,0 МПа, которые ниже давления 15 МПа, необходимого для производства карбамида;

- получение низкотемпературного жидкого диоксида углерода с давлением 1,6-1,8 МПа, которое требует дополнительного компримирования перед подачей в реактор синтеза карбамида.

Технической задачей заявляемого изобретения является установка компримирования углекислого газа, позволяющая вырабатывать углекислый газ с параметрами, необходимыми для производства карбамида при пониженных энергозатратах.

Поставленная задача достигается с помощью компрессорно-насосной установки, в которой газообразный СО2 вначале сжимается центробежным компрессором до 3,0 МПа, конденсируется за счет холода абсорбционной водоаммиачной холодильной машины, компримируется затем насосом до давления 15 МПа, после чего газифицируется с поглощением тепла в рекуперативном теплообменнике и подается на агрегат карбамида. Компрессорно-насосная установка, соответствующая заявляемому изобретению, характеризуется не только оптимальным построением ее технологической схемы, но также применением двух источников холода - абсорбционной водоаммиачной холодильной машины.

Сущностью предлагаемого технического решения является установка ожижения диоксида углерода, включающая центробежный компрессор, насос, парогенератор, конденсатор-испаритель и абсорбционную водоаммиачную холодильную машину, причем процесс ожижения предварительно охлажденного диоксида углерода производится за счет двухступенчатого сжатия диоксида углерода в центробежном компрессоре и насосе, а также холода абсорбционной водоаммиачной холодильной машины и с одновременным производством пара в парогенераторе путем использования теплоты сжатия диоксида углерода в центробежном компрессоре с его подачей в абсорбционную водоаммиачную холодильную машину.

Технологическая схема компрессорно-насосной установки для обеспечения диоксидом углерода высокого давления производства карбамида изображена на чертеже.

Принцип ее действия иллюстрируется следующим примером.

Пример

Газообразный диоксид углерода подается при температуре 45°С в рекуперативный теплообменник 1, в котором он охлаждается до 24°С. Там из него конденсируется влага, отделяемая в сепараторе 2. После этого он компримируется в центробежном компрессоре 3 до давления 3 МПа и поступает с температурой 190-200°С в парогенератор 4, в котором охлаждается до 140-150°С, расходуя тепло на производство пара с температурой 120-130°С. Пар подается в теплоиспользующую абсорбционную водоаммиачную холодильную машину 6, а конденсат из нее возвращается в парогенератор 4 водяным насосом 5.

Газообразный СО2 охлаждается в рекуперативном теплообменнике 7 до 35°С, а сконденсированная влага отделяется в сепараторе 8. После этого газообразный диоксид углерода направляется в блок осушки 9 и охлаждается в рекуперативном теплообменнике 10. Затем он конденсируется и переохлаждается за счет холода кипящего аммиака в конденсаторе-испарителе 11, в который аммиак подается из абсорбционной водоаммиачной холодильной машины 6 аммиачным циркуляционным насосом 12. Далее СO2 в виде переохлажденной низкотемпературной жидкости поступает в накопительную емкость 13. Пары диоксида углерода и неконденсирующиеся газы из накопительной емкости 13 используются для осуществления процессов регенерации и охлаждения переключающихся адсорберов блока осушки 9. При этом они дросселируются до давления 0,6 МПа через вентиль 14 и последовательно проходят рекуперативный теплообменник 9 и электроподогреватель 15, который в режиме регенерации адсорбера блока осушки включен, а в режиме охлаждения его выключен. После блока осушки 9 пары диоксида углерода и неконденсирующиеся примеси выбрасываются в атмосферу. Жидкий низкотемпературный диоксид углерода из накопительной емкости 13 компримируется насосом 16 до давления 15 МПа и, пройдя последовательно три рекуперативных теплообменника 10, 7 и 1, газифицируется и подается в колонну синтеза карбамида.

Компрессорно-насосная углекислотная установка для обеспечения диоксидом углерода высокого давления процесса производства карбамида имеет более низкие удельные энергозатраты по сравнению с установкой-прототипом, а также характеризуется высокой надежностью. Например, по прототипу при компримировании диоксида углерода в количестве 28800 нм3/ч в центробежном компрессоре до давления 15 МПа потребляемая электроэнергия составляет 7,2 МВт, а удельные затраты достигают 0,136 кВт·ч/кг СO 2.

В предлагаемой компрессорно-насосной углекислотной установке суммарные расходы электроэнергии на компримировании CO2 в количестве 28800 нм3/ч в турбокомпрессоре до 3 МПа, его осушку и конденсацию в испарителе абсорбционной водоаммиачной холодильной машины и последующее его сжатия в насосе до 15 МПа, после чего он нагревается и газифицируется в рекуперативных теплообменниках, составляют 5,5 МВт, из которых 5,35 МВт приходится на турбокомпрессор и 0,15 МВт на привод насоса и обеспечение работы абсорбционной водоаммиачной холодильной машины. Удельный расход электроэнергии на производство CO2 с давлением 15 МПа будет равняться 0,104 кВт·ч/кг. Таким образом, экономия электроэнергии на производство одного и того же количества CO 2 с давлением 15 МПа составит около 24% или 1,7 МВт.

Класс F25J1/00 Способы и устройства для сжижения или отверждения газов или их смесей

способ сжижения высоконапорного природного или низконапорного попутного нефтяного газов -  патент 2528460 (20.09.2014)
способ частичного сжижения природного газа (варианты) -  патент 2525759 (20.08.2014)
способ охлаждения углеводородного потока и устройство для его осуществления -  патент 2525048 (10.08.2014)
система для отделения неконденсируемого компонента на установке для сжижения природного газа -  патент 2509968 (20.03.2014)
способ сжижения природного газа с предварительным охлаждением охлаждающей смеси -  патент 2509967 (20.03.2014)
способ сепарации и сжижения попутного нефтяного газа с его изотермическим хранением -  патент 2507459 (20.02.2014)
способ и система сжижения -  патент 2505762 (27.01.2014)
способ и устройство для охлаждения и сжижения потока углеводородов -  патент 2503900 (10.01.2014)
улучшенное удаление азота в установке для получения сжиженного природного газа -  патент 2502026 (20.12.2013)
способ сжижения природного газа и устройство для его осуществления -  патент 2500959 (10.12.2013)
Наверх