лазерно-ультразвуковой дефектоскоп

Классы МПК:G01N29/04 анализ твердых тел
Патентообладатель(и):Карабутов Александр Алексеевич (RU)
Приоритеты:
подача заявки:
2008-05-29
публикация патента:

Использование: для контроля внутренних структур объектов, а также их геометрических параметров и физических характеристик. Сущность изобретения заключается в том, что лазерно-ультразвуковой дефектоскоп содержит импульсный лазер, соединенный через оптоволокно с оптико-акустическим преобразователем, а также пьезоприемник, соединенный через усилитель с аналого-цифровым преобразователем, подключенным к компьютеру, при этом оптико-акустический преобразователь выполнен в виде единого блока, расположенного на исследуемом объекте, и содержит пластину оптико-акустического генератора, помещенную между исследуемым объектом и прозрачным цилиндром, на торце которого расположен пьезоприемник, а фаска цилиндра сопряжена через оптическую систему с оптоволокном. Технический результат: исключение необходимости пропускания излучения лазера сквозь приемник ультразвука. 1 з.п. ф-лы, 3 ил. лазерно-ультразвуковой дефектоскоп, патент № 2381496

лазерно-ультразвуковой дефектоскоп, патент № 2381496 лазерно-ультразвуковой дефектоскоп, патент № 2381496 лазерно-ультразвуковой дефектоскоп, патент № 2381496

Формула изобретения

1. Лазерно-ультразвуковой дефектоскоп, содержащий импульсный лазер, соединенный через оптоволокно с оптико-акустическим преобразователем, а также пьезоприемник, соединенный через усилитель с аналого-цифровым преобразователем, подключенным к компьютеру, отличающийся тем, что оптико-акустический преобразователь выполнен в виде единого блока, расположенного на исследуемом объекте, и содержит пластину оптико-акустического генератора, помещенную между исследуемым объектом и прозрачным цилиндром, на торце которого расположен пьезоприемник, а фаска цилиндра сопряжена через оптическую систему с оптоволокном.

2. Лазерно-ультразвуковой дефектоскоп по п.1, отличающийся тем, что акустические импедансы материалов прозрачного цилиндра и пластины оптико-акустического генератора равны.

Описание изобретения к патенту

Предлагаемое изобретение относится к неразрушающим методам исследования и может быть использовано для контроля внутренних структур объектов их геометрических параметров и определения их физических характеристик.

Известен ультразвуковой дефектоскоп, содержащий импульсный лазер, оптически прозрачную пластину, пластину из поглощающего оптическое излучение материала и приемник ультразвука, при этом оптически поглощающая пластина выполнена в виде плоско-вогнутой линзы, а поглощающая пластина - в виде плоско-выпуклой линзы, которые сопряжены между собой сферическими поверхностями (1).

Недостатком данного устройства является невозможность его использования при одностороннем доступе к объекту контроля.

Наиболее близким к предлагаемому лазерно-ультразвуковому дефектоскопу является устройство, описанное в (2). Оно содержит импульсный лазер, соединенный через оптическое волокно с оптико-акустическим преобразователем, а также пьезоприемник, соединенный через усилитель с аналого-цифровым преобразователем, подключенным к компьютеру. К недостаткам известного устройства следует отнести необходимость пропускания излучения лазера сквозь приемник ультразвука, что создает значительные трудности при практической реализации.

Предлагаемое устройство отличается от известного тем, что оптико-акустический преобразователь в нем выполнен в виде единого блока и содержит пластину оптико-акустического генератора, помещенную между исследуемым объектом и прозрачным цилиндром, на торце которого расположен пьезопреобразователь, а фаска цилиндра сопряжена через оптическую систему с оптоволокном. При этом акустические импедансы пластины и цилиндра равны.

Возможность реализации.

На Фиг.1 приведена схема лазерно-ультразвукового дефектоскопа. Он содержит:

1 - лазер с модуляцией добротности и высокой частотой повторения импульсов, содержащий на выходе адаптер для ввода излучения в оптическое волокно;

2 - силовое оптическое волокно для передачи лазерного излучения в оптико-акустический преобразователь;

3 - оптико-акустический преобразователь для преобразования лазерных импульсов в акустические, передачи их в исследуемую среду и регистрации отраженных и рассеянных назад акустических сигналов, содержащий оптико-акустический генератор, оптико-акустическую призму, широкополосный пьезопреобразователь и зарядовый предусилитель;

4 - скоростной прецизионный аналого-цифровой преобразователь, обеспечивающий перевод электрического сигнала оптико-акустического преобразователя в цифровую форму, временное запоминание его и передачу по скоростной линии в компьютер;

5 - комбинированный многофункциональный блок питания, обеспечивающий электропитание лазера, оптико-акустического преобразователя и аналого-цифрового преобразователя;

6 - систему обработки данных, включающую компьютер, связанный скоростной линией передачи данных с аналого-цифровым преобразователем и программным обеспечением, обеспечивающим прием цифровых данных, их спектральную обработку и отображение результатов на экране монитора, а также интерактивное управление процессом передачи и обработки данных;

7 - специализированный изолированный корпус, в котором помещаются лазер, аналого-цифровой преобразователь и блок питания.

Управление и работа системы осуществляются от компьютера, а синхронизация работы лазера производится специальными сигналами, вырабатываемыми в блоке аналого-цифрового преобразователя. Старт-считывание сигнала осуществляется по импульсу фотодиода, согласованному с лазерным импульсом.

Схема оптико-акустического преобразователя 3 приведена на Фиг.2. Оптико-акустический преобразователь 3 содержит прозрачный для лазерного излучения цилиндр 8 с плоскопараллельными основаниями, на которых размещены оптико-акустический генератор 9 и широкополосный пьезоприемник 10. Оптико-акустический генератор 9 представляет собой плоскопараллельную пластину, выполненную из материала, поглощающего лазерное излучение, имеющего высокое значение коэффициента теплового расширения и согласованного по акустическому импедансу с материалом цилиндра 8 (например, из полимера). Облучение оптико-акустического генератора производится коротким лазерным импульсом с помощью формирующей лазерный пучок оптической системы 11, сопрягаемой с волокном 2, через фаску 12 на поверхности цилиндра 8, образованной на его торце с закрепленным пьезоприемником 10.

Дефектоскоп работает следующим образом. Оптико-акустический генератор 9 приводится в акустический контакт с исследуемым объектом 13. Лазерный импульс поступает с лазера 1 через оптоволокно 2, оптическую систему 11, фаску 12 и прозрачное тело цилиндра 8 на пластину оптико-акустического генератора 9. Последний излучает акустический импульс в прозрачный цилиндр 9 и исследуемый объект 13. Рассеянные в объекте акустические импульсы через оптико-акустический генератор 10 и прозрачный цилиндр 9 попадают на пьезоприемник 11, и его электрический сигнал, усиленный усилителем 14, поступает в аналого-цифровой преобразователь 4.

На Фиг.3 показан пример сигнала оптико-акустического преобразователя. По времени прихода рассеянных импульсов определяют глубину нахождения дефекта, а по измеренной толщине объекта и времени прихода сигнала, отраженного от его тыльной поверхности, - скорость ультразвука в объекте контроля.

Источники информации

1. Авторское свидетельство СССР № 849072, кл. G01N 29/04.

2. Патент России № 2232983, кл. G01N 29/04.

Класс G01N29/04 анализ твердых тел

инспекционное устройство для обнаружения посторонних веществ -  патент 2529667 (27.09.2014)
устройство контроля при контролировании посторонних веществ -  патент 2529585 (27.09.2014)
способ непрерывного контроля средней влажности волокон в волоконной массе -  патент 2528043 (10.09.2014)
способ лабораторного контроля средней тонины волокон в массе -  патент 2527146 (27.08.2014)
способ и устройство контроля качества акустического контакта при ультразвуковой дефектоскопии -  патент 2523781 (20.07.2014)
способ обнаружения предвестников чрезвычайных ситуаций на линейной части подземного магистрального продуктопровода -  патент 2523043 (20.07.2014)
способ определения коррозионного состояния подземной части железобетонных опор линий электропередач и контактной сети -  патент 2521730 (10.07.2014)
способ диагностики рельсового пути -  патент 2521095 (27.06.2014)
комплекс дефектоскопии технологических трубопроводов -  патент 2516364 (20.05.2014)
комплекс для ультразвукового контроля изделий и оптическое измерительное устройство комплекса -  патент 2515957 (20.05.2014)
Наверх