устройство для статико-импульсного упрочнения винтов
Классы МПК: | B24B39/04 для обработки наружных поверхностей вращения B21H3/12 изделий с винтовой поверхностью |
Автор(ы): | Степанов Юрий Сергеевич (RU), Киричек Андрей Викторович (RU), Афанасьев Борис Иванович (RU), Фомин Дмитрий Сергеевич (RU), Самойлов Николай Николаевич (RU), Сотников Владимир Ильич (RU), Василенко Юрий Валерьевич (RU), Бурнашов Михаил Анатольевич (RU) |
Патентообладатель(и): | Государственное образовательное учреждение высшего профессионального образования "Орловский государственный технический университет" (ОрелГТУ) (RU) |
Приоритеты: |
подача заявки:
2008-10-01 публикация патента:
10.03.2010 |
Изобретение относится к технологии машиностроения, в частности к устройствам для отделочно-упрочняющей обработки деталей типа винтов. Устройство содержит корпус в виде диска, выполненный с возможностью вращения, деформирующие элементы, пластинчатые пружины и кулачковый барабан. Кулачковый барабан закреплен неподвижно относительно корпуса, и на его торце выполнены кулачки в виде выступов и впадин для контакта со средней частью пластинчатых пружин. Деформирующие элементы закреплены на одних концах пластинчатых пружин, которые другими концами радиально и жестко закреплены на торце диска. В результате расширяются технологические возможности, обеспечивается возможность управления глубиной упрочненного слоя и микрорельефом поверхности. 12 ил.
Формула изобретения
Устройство для статико-импульсного упрочнения винтов, содержащее корпус в виде диска, выполненный с возможностью вращения, и деформирующие элементы, отличающееся тем, что оно снабжено пластинчатыми пружинами и неподвижно закрепленным относительно корпуса кулачковым барабаном, на торце которого выполнены кулачки в виде выступов и впадин, выполненные с возможностью контакта со средней частью пластинчатых пружин, упомянутые деформирующие элементы закреплены на одних концах пластинчатых пружин, которые другими концами радиально и жестко закреплены на торце диска.
Описание изобретения к патенту
Изобретение относится к технологии машиностроения, в частности к устройствам для отделочно-упрочняющей обработки деталей из сталей и сплавов поверхностным пластическим деформированием (ППД) со статико-импульсным нагружением деформирующих элементов.
Известно устройство для упрочняющей обработки, состоящее из вибратора возвратно-продольных колебаний деформирующего элемента и кулачка, приводимого во вращение от электродвигателя через бесступенчатый редуктор и предназначенного для возбуждения поперечных колебательных движений этого деформирующего элемента [1].
Устройство отличается ограниченными возможностями управления в создании гетерогенных упрочненных слоев и регулярного микрорельефа обрабатываемой поверхности, низким КПД, недостаточно большой глубиной упрочненного слоя и недостаточно высокой степенью упрочнения обрабатываемой поверхности.
Известно устройство для ударного вибронакатывания, содержащее корпус, сепаратор с деформирующим элементом, опору в виде гладкого ролика, установленную в корпусе с возможностью вращения, при этом оно снабжено приводом опоры и упругим элементом, один конец которого закреплен на корпусе, а другой - на сепараторе [2].
Устройство отличается ограниченными возможностями управления в создании гетерогенных упрочненных слоев и регулярного микрорельефа обрабатываемой поверхности, низким КПД, недостаточно большой глубиной упрочненного слоя и недостаточно высокой степенью упрочнения обрабатываемой поверхности.
Известно устройство для статико-импульсного упрочнения сложнопрофильных деталей, содержащее камеру, которая заполнена деформирующими элементами в виде микрошариков или шариков и выполнена с возможностью размещения в ней заготовки, и волновод, при этом оно снабжено размещенными в камере двумя колодками с вогнутыми цилиндрическими поверхностями, бойком, первым гидроцилиндром, подключенным к гидравлическому генератору импульсов для создания импульсной нагрузки на деформирующие элементы, и вторым гидроцилиндром, выполненным с возможностью воздействия на первый гидроцилиндр для создания статической нагрузки на деформирующие элементы, последние расположены между цилиндрическими вогнутыми поверхностями колодок и заготовкой с возможностью охватывания последней, одна из упомянутых колодок выполнена с возможностью передвижения и шарнирно соединена с волноводом, камера выполнена со сквозными отверстиями в ее двух противоположных стенках для обеспечения прохождения заготовки и содержит затворы с амортизаторами, расположенные в упомянутых сквозных отверстиях камеры, при этом волновод и боек выполнены одинакового диаметра и расположены в первом гидроцилиндре [3, 4].
Известное устройство представляет собой весьма сложную, дорогостоящую, металлоемкую и энергоемкую конструкцию, которая значительно увеличивает себестоимость изготовления обрабатываемых деталей.
Задачей изобретения является расширение технологических возможностей статико-импульсной обработки поверхностным пластическим деформированием за счет управления глубиной упрочненного слоя, степенью упрочнения и микрорельефом поверхности при минимальной энергоемкости и трудоемкости изготовления оснастки путем использования устройства, имеющего деформирующие элементы, подвешенные на упругих пластинах, взаимодействующие с кулачковым барабаном.
Поставленная задача решается с помощью предлагаемого устройства для статико-импульсного упрочнения винтов, содержащего корпус в виде диска, выполненный с возможностью вращения, и деформирующие элементы, при этом оно снабжено пластинчатыми пружинами и кулачковым барабаном, закрепленным неподвижно относительно корпуса, на торце которого выполнены кулачки в виде выступов и впадин, выполненные с возможностью контакта со средней частью пластинчатых пружин, упомянутые деформирующие элементы закреплены на одних концах пластинчатых пружин, которые другими концами радиально и жестко закреплены на торце диска.
Особенности конструкции и работы предлагаемого устройства поясняются чертежами.
На фиг.1 изображено предлагаемое устройство, продольный разрез, и схема упрочнения винтовой поверхности заготовки винта на токарном станке с использованием трехкулачкового самоцентрирующего патрона с поджатием задним центром; на фиг.2 - вид по А на фиг.1, вид с торца устройства; на фиг.3 - общий вид устройства применительно к обработки плоской поверхности; на фиг.4 - вариант крепления деформирующего элемента на пластинчатой пружине с использованием сепаратора; на фиг.5 - элемент Б на фиг.1, положение деформирующего элемента, закрепленного на пластинчатой пружине, когда элемент находится во впадине обрабатываемого винта, а кулачковый барабан контактирует с пластинчатой пружиной впадиной; на фиг.6 - вид В на фиг.5; на фиг.7 - элемент Б на фиг.1, положение деформирующего элемента, закрепленного на пластинчатой пружине, когда элемент находится во впадине обрабатываемого винта, а кулачковый барабан контактирует с пластинчатой пружиной выступом; на фиг.8 - вид В на фиг.7; на фиг.9 - элемент Б на фиг.1, положение деформирующего элемента, закрепленного на пластинчатой пружине, когда элемент находится на выступе витка обрабатываемого винта, а кулачковый барабан контактирует с пластинчатой пружиной впадиной; на фиг.10 - вид В на фиг.9; на фиг.11 - элемент Б на фиг.1, положение деформирующего элемента, закрепленного на пластинчатой пружине, когда элемент находится на выступе витка обрабатываемого винта, а кулачковый барабан контактирует с пластинчатой пружиной выступом; на фиг.12 - вид В на фиг.11.
Предлагаемое устройство предназначено для статико-импульсного упрочнения винтов поверхностным пластическим деформированием (ППД). Устройство устанавливается, например, на суппорте токарного станка (не показан), заготовке винта 1, закрепленной в трехкулачковом самоцентрирующем патроне 2 и поджатой задним центром, сообщается вращательное движение Vз относительно собственной продольной оси, устройству - продольная подача Sпр, а деформирующим элементам 3 - статическая Рст и импульсная Рим нагрузки в поперечном направлении Sп, а также вращательное движение V и.
Предлагаемое устройство имеет корпус 4 в виде диска, на торце которого на пластинчатых пружинах установлены деформирующие элементы 3. На противоположном торце корпуса выполнен хвостовик в виде конуса 5, предназначенный для крепления в шпинделе индивидуального привода (не показан).
Деформирующие элементы 3 закреплены на одних концах пластинчатых пружин 6, изготовленных, например, из стальной холоднокатаной ленты согласно ГОСТ 21996-76. Пластинчатые пружины 6 радиально и жестко закреплены другими концами на торце корпуса 4. Деформирующие элементы 3 закреплены на одном диаметре D, который выбирается по конструктивным соображениям. Деформирующие элементы 3 могут быть закреплены на пластинчатых пружинах 6 как жестко, так и подвижно с использованием сепаратора. Вариант крепления деформирующих элементов 3 на пластинчатых пружинах 6 с использованием сепаратора 7 (см. фиг.4).
Средней частью пластинчатые пружины 6 контактируют с кулачковым барабаном 8, который закреплен неподвижно относительно корпуса 4 и имеет на торце кулачки в виде выступов 9 и впадин 10. Кулачковый барабан 8 установлен соосно корпусу 4 и хвостовику 5, охватывает корпус устройства и имеет количество выступов 9 и впадин 10, равное количеству пластинчатых пружин 6. Кулачковый барабан 8 крепится к неподвижному корпусу индивидуального привода (не показан) и имеет возможность регулирования своей высоты с целью установки необходимого натяга деформирующих элементов при настройке.
Торцовая поверхность кулачкового барабана 8, обращенная к пластинчатым пружинам, представляет собой впадины 10 и выступы 9, набегая на которые, пластинчатые пружины 6 с деформирующими элементами 3 осуществляют статическое Рст и импульсное Рим воздействие на обрабатываемую винтовую поверхность.
При контактировании пластинчатых пружин 6 с впадинами 10 кулачкового барабана 8 обеспечивается статическая Рст нагрузка, оказываемая деформирующими элементами 3 на обрабатываемую поверхность. При набегании пластинчатых пружин 6 на выступы 9 кулачкового барабана 8 развивается импульсная нагрузка Р им.
Частота воздействия статической Р ст и импульсной Рим нагрузок зависят от скорости вращения Vи корпуса с деформирующими элементами. Величина статической Рст нагрузки устанавливается путем поперечной подачи Sп всего устройства, осуществляемой вручную. Величина импульсной нагрузки Рим обеспечивается высотой h выступа 9 относительно впадины 10.
Если скорость вращения корпуса с деформирующими элементами равна нулю V и=0, то устройство будет работать в статическом режиме.
Вращение корпуса с деформирующими элементами обеспечивает импульсную нагрузку и создает импульсный режим работы устройства.
Режим загрузки, выгрузки и холостого хода обеспечивается отводом устройства от обрабатываемой заготовки.
Предлагаемое устройство устанавливается, например, на суппорте токарного станка (не показан).
Предлагаемое устройство работает следующим образом.
Заготовка винта крепится, например, в токарном патроне токарного станка (не показан) и поджимается центром задней бабки.
Включают вращение заготовки Vз.
Для работы в статическом режиме суппорт с устройством вручную перемещают в поперечном направлении до касания деформирующих элементов обрабатываемой поверхности заготовки и дают необходимый натяг.
Затем включают продольную подачу Sпр и производят упрочнение со статической нагрузкой Рст. При этом пластинчатые пружины находятся во впадинах кулачкового барабана и привод вращения корпуса устройства не включен, т.е. Vи =0. В результате этого действия осуществляется статическое пластическое деформирование поверхности заготовки на величину ст.
Импульсный режим ППД, характеризуемый наличием ударной нагрузки Рим, осуществляется при вращении корпуса с деформирующими элементами за счет воздействия выступов на пластинчатые пружины с деформирующими элементами с частотой, зависящей от скорости принудительного вращения корпуса с деформирующими элементами Vи, а величина импульсной нагрузки Рим обеспечивается высотой h выступа относительно впадины. Пластинчатые пружины с деформирующими элементами набегают на неподвижные выступы кулачкового барабана и ударяют с силой Рим, вдавливая их в упрочняемую поверхность на величину им.
Величина силы Рим зависит от формы и величины выступов h, от жесткости пластинчатых пружин, а частота импульсов - от скорости вращения корпуса V и. Пластинчатые пружины, на которых установлены деформирующие элементы, дополнительно выполняют функцию демпфирующих элементов, снижающих вибрационные нагрузки на всю конструкцию предлагаемого устройства и на станок.
На кинетическую энергию удара оказывает влияние угловая скорость движения корпуса V и и сила статического поджатия деформирующих элементов к упрочняемой поверхности. Количество переданной энергии удара в упрочняемую поверхность будет определяться формой ударных импульсов.
Длительность ударных импульсов определяется размерами площадки выступов кулачкового барабана, с которой контактируют плоские пружины с деформирующими элементами.
В отличие от известных схем упрочнения, когда удар осуществляется непосредственно деформирующим элементом и форма импульса регулируется только за счет изменения диаметра и длины деформирующих элементов, в данном устройстве форма импульса может изменяться за счет формы и размеров выступов, что расширяет технологические возможности и упрощает конструкцию устройства.
Глубина упрочненного слоя, обработанного предлагаемым устройством, достигает 1,5 2,5 мм, что значительно (в 3 4 раза) больше, чем при традиционном статическом упрочнении. Наибольшая степень упрочнения составляет 15 30%. В результате статико-импульсной обработки предлагаемым устройством по сравнению с традиционным накатыванием эффективная глубина слоя, упрочненного на 20% и более, возрастает в 2 3 раза, а глубина слоя, упрочненного на 10% и более - в 1,7 2,2 раза.
Пример. Для оценки параметров качества поверхностного слоя, упрочненного предлагаемым устройством, проведены экспериментальные исследования обработки винта левого Н41.1016.01.001 винтового насоса ЭВН5-25-1500, на токарном станке с использованием предлагаемого устройства. Винт (см. фиг.1) имел следующие размеры: общая длина - 1282 мм, длина винтовой части - 1208 мм, диаметр поперечного сечения винта - 27-0,05 мм, эксцентриситет - 3,3 мм, шаг - 28 ±0,01 мм, шероховатость Ra=0,4 мкм; винтовая поверхность однозаходная, левого направления; материал - сталь 18ХГТ ГОСТ 4543-74, твердость НВ 207-228, масса - 5,8 кг. Обработка проводилась на токарно-винторезном станке мод. 16К20 с использованием предлагаемого устройства.
Значения технологических факторов (частоты ударов, величины продольной и поперечной подач, скорости вращения инструмента и заготовки и др.) выбирались таким образом, чтобы обеспечить кратность ударного воздействия на элементарную площадку обрабатываемой поверхности в диапазоне 6 10. Дальнейшее увеличение кратности деформирующего воздействия ведет к разупрочнению.
Величины сил статической и импульсной нагрузок деформирующих элементов на обрабатываемую поверхность составляли Рст 25 40 кН; Рим=255 400 кН. Глубина упрочненного статико-импульсной обработкой слоя в 3 4 раза выше, чем при традиционном обкатывании. Упрочненный слой при традиционном статическом обкатывании формируется в условиях длительного действия больших статических усилий. Предлагаемым устройством аналогичная глубина упрочненного слоя достигается в результате кратковременного воздействия на очаг деформации пролонгированного импульса энергии. При близких степенях упрочнения поверхностного слоя величина статической составляющей нагрузки предлагаемым устройством значительно меньше.
Исследования напряженного состояния упрочненного поверхностного слоя статико-импульсной обработкой показали, что максимальные остаточные напряжения находятся близко к поверхности, как при чеканке, что благоприятно для большинства сопрягаемых деталей механизмов и машин. Сравнение глубины напряженного и упрочненного слоя, градиента напряжений и градиента наклепа показывает, что глубина напряженного слоя в 1,1 1,3 раза больше, чем глубина наклепанного слоя, что согласуется с теорией ППД.
Достигаемая в процессе обработки предлагаемым устройством предельная величина шероховатости составляет Ra=0,08 мкм, возможно снижение исходной шероховатости в 5 раз.
Микровибрации в процессе, реализуемом предлагаемым устройством, благоприятно сказываются на условиях работы деформирующих элементов. Наложение малого по амплитуде колебательного движения приводит к более равномерному распределению нагрузки на деформирующие элементы, вызывает дополнительные циклические перемещения контактных поверхностей деформирующих элементов и заготовки, облегчает формирование упрочняемой поверхности. Колебания способствуют лучшему проникновению смазочно-охлаждающей жидкости (СОЖ) в зону обработки. При наложении колебаний деформирующая поверхность элементов периодически «отдыхает», что способствует увеличению ее стойкости. Обработка в условиях колебаний резко увеличивает эффективность охлаждающего, диспергирующего и пластифицирующего действия СОЖ вследствие облегчения ее доступа в зону контакта деформирующих элементов и заготовки.
Предлагаемое устройство расширяет технологические возможности статико-импульсной обработки поверхностным пластическим деформированием, позволяет управлять глубиной упрочненного слоя и микрорельефом поверхности.
Достоинствами предлагаемого устройства является возможность создания определенной направленности свойств и текстуры поверхностного слоя металла, что повышает качество обработки; устройство отличается компактностью и высоким КПД, малой энергоемкостью (по сравнению с известными [3-4]), достаточно большой глубиной упрочненного слоя и достаточно высокой степенью упрочнения обрабатываемой поверхности; устройство отличается широкими возможностями управления в создании гетерогенных упрочненных слоев и регулярного микрорельефа обрабатываемой поверхности.
Источники информации
1. А.с. СССР 366062, МПК В24В 39/00. Способ упрочнения поверхности металлических деталей. Г.М.Азаревич. 1616331/25-8. 07.12.1970; 10.01.1973.
2. А.с. СССР 1238952, МПК В24В 39/00. Устройство для ударного вибронакатывания. Ю.Г.Шнейдер, Б.Н.Букин, Г.Р.Круглов. 3818752/25-27.04.12.1984; 23.06.1986.
3. Патент РФ 2319596. МПК В24В 39/04. Устройство для статико-импульсного упрочнения сложнопрофильных деталей. Степанов Ю.С., Киричек А.В., Афанасьев Б.И., Самойлов Н.Н., Фомин Д.С., Михайлов Г.А., Иножарский В.В., Гаврилин A.M., Селеменев К.Ф. Заявка № 2006125126/02. 12.07.06. 20.03.2008. Бюл. № 8.
4. Патент РФ 2319597. МПК В24В 39/04. Способ статико-импульсного упрочнения сложнопрофильных деталей. Степанов Ю.С., Киричек А.В., Афанасьев Б.И., Самойлов Н.Н., Фомин Д.С., Михайлов Г.А., Иножарский В.В., Гаврилин A.M., Селеменев К.Ф. Заявка № 2006125135/02. 12.07.06; 20.03.2008. Бюл. № 8.
Класс B24B39/04 для обработки наружных поверхностей вращения
Класс B21H3/12 изделий с винтовой поверхностью