способ использования лобового воздушного потока для нужд транспорта
Классы МПК: | F03D9/00 Приспосабливание ветряных двигателей для особых целей; агрегатирование ветряных двигателей с приводимыми ими устройствами (при преобладании отличительных признаков приводимых устройств см классы, к которым отнесены эти устройства) B60K16/00 Устройства или приспособления силовых установок, связанные с передачей энергии от природных источников, например солнца, ветра |
Патентообладатель(и): | Степанчук Аркадий Николаевич (BY) |
Приоритеты: |
подача заявки:
2007-04-09 публикация патента:
27.04.2010 |
Изобретение относится к ветротехнике и может быть использовано для нужд транспортных средств. Способ использования лобового воздушного потока характеризуется тем, что набегающий лобовой воздушный поток поступает через, по меньшей мере, одно заборное входное отверстие по воздуховоду на турбину, установленную вращающейся в центральной цилиндрической части ветроприемника, переходящей в сборный воздушный канал. Турбину выполняют шестилопастной с многочисленными карманами-полостями, а сборный воздушный канал выполняют раздвоенным на рукава, отверстия которых выходят на обе боковые стороны транспортного средства. Использование изобретения дает возможность отказаться от использования двигателей внутреннего сгорания, работающих на углеводородном топливе, что позволит значительно улучшить экологическую ситуацию. 1 ил.
Формула изобретения
Способ использования лобового воздушного потока для нужд транспорта, характеризующийся тем, что набегающий лобовой воздушный поток поступает через, по меньшей мере, одно заборное входное отверстие по воздуховоду на турбину, установленную вращающейся в центральной цилиндрической части ветроприемника, переходящей в сборный воздушный канал, отличающийся тем, что турбину выполняют шестилопастной с многочисленными карманами-полостями, а сборный воздушный канал выполняют раздвоенным на рукава, отверстия которых выходят на обе боковые стороны транспортного средства.
Описание изобретения к патенту
Изобретение относится к ветротехнике.
Как известно, при движении любое транспортное средство в атмосферной воздушной среде испытывает разнообразные воздействия, как от естественного потока воздуха (ветра), так и от искусственно создаваемого самим транспортом набегающего потока. Использование именно этого вида встречного, лобового движения воздуха и является объектом настоящего изобретения.
Известно, что скорость ветра, например, 8 м/сек (пригодная для промышленного использования) соответствует скорости движения автомобиля 29 км/час, скорость ветра 20 м/сек соответствует скорости движения автомобиля 72 км/час (1). При средней скорости передвижения автомобиля в 70 км/час автомобиль испытывает такое лобовое сопротивление встречного потока, что для борьбы с ним при конструировании и производстве значительно завышают мощность его двигателя, что повышает расход углеводородного топлива. Также стараются улучшить обтекаемость его внешних форм, рассчитывая их на компьютерах и испытывая в аэродинамических трубах.
Целью настоящего изобретения является предложить такое решение, при котором «паразитный» лобовой набегающий воздушный поток возможно использовать с максимальной пользой, а не бороться с ним. Вместо двигателя внутреннего сгорания предлагается установить ветродвигатель (ветротурбину), приводящий в действие генератор или генераторы, заряжающие аккумуляторную батарею, от которой смогут работать электромоторы, приводящие колеса транспортных средств: автомобилей, поездов, водных плавучих средств. Принципы и сущность конструирования таких ветродвигателей (турбин) запатентованы (2).
Аналогами данного изобретения являются транспортные средства различного назначения, в которых вместо двигателей внутреннего сгорания используются аккумуляторные электродвигатели: шахтные электровозы, электрокары, электромобили, ресурс хода некоторых из них (по сообщениям СМИ) составляет до 500 км без промежуточной зарядки их аккумуляторных батарей. Чтобы их зарядить от обычной электросети, требуется время, часто значительно превосходящее время их полезной работы. Известны электромобили, аккумуляторы которых заряжаются на ходу от полупроводниковых солнечных батарей, но они могут работать только в дневное время суток.
Интересны достижения в буерном спорте, где сравнительно простое парусное средство способно «транспортировать» спортсменов со скоростью, превышающей скорость самого ветра в четыре раза, а с помощью устройств на колесах под парусами так же нет проблемы передвигаться (3).
Суммируя весь этот опыт, можно решить весьма важную техническую задачу: заряжать аккумуляторную батарею непосредственно во время движения транспортного средства с помощью встречного лобового воздушного потока, который далеко не всегда будет совпадать с попутным природным ветром, но это обстоятельство не должно сказываться на эффективности работы этого транспорта.
Технический результат налицо: станет возможным не только отказаться от углеводородного топлива (нефти, природного газа), как к этому стремится, например, государство Швеция в своей Концепции и Стратегии устойчивого развития, в которой, кстати, нет места АЭС, но и значительно улучшить экологическую ситуацию на планете, исключив выхлоп газов в ее атмосферу.
Указанный технический результат достигается в способе использования лобового воздушного потока для нужд транспорта, характеризующемся тем, что набегающий лобовой воздушный поток поступает через, по меньшей мере, одно заборное входное отверстие по воздуховоду на турбину, установленную вращающейся в центральной цилиндрической части ветроприемника, переходящей в сборный воздушный канал, турбину выполняют шестилопастной с многочисленными карманами-полостями, а сборный воздушный канал выполняют раздвоенным на рукава, отверстия которых выходят на обе боковые стороны транспортного средства.
Сущность изобретения поясняется на чертеже. Набегающий лобовой воздушный поток попадает в ветроприемник, в заборное отверстие 1. Оно может быть различной формы в зависимости от конструктивной целесообразности и может быть не одно, а как, скажем, у некоторых современных автомобилей, где для охлаждения двигателей, установленных сзади, воздух засасывается из двух «жаберных» боковых отверстий.
Далее воздушный поток устремляется по воздуховоду 2, который также может иметь различную форму, длину и проходить под полом транспортного средства, наверху или по бокам.
Из воздуховода 2 задействованный кинетической энергией воздух попадает в многочисленные карманы-полости турбины 4, вращающейся в цилиндрической части 3 ветроприемника, а далее в сборный воздушный канал воздуховода, где раздваивается на два рукава 5, выходные отверстия которых должны располагаться по обе боковые стороны транспортного средства, потому что здесь также можно получить мощный аэродинамический эффект: будет происходить отсос отработанного воздуха из рукавных отверстий. Создается это из-за того, что внешний, сметающий транспортное средство воздушный поток (на чертеже он обозначен двумя большими стрелками) будет отсасывать из двух боковых отверстий 5 отработанный воздушный поток.
Турбина 4 (3, 4) может быть расположена как в горизонтальном, так и вертикальном рабочем положении. Это зависит от общей компоновки и целесообразности конструктивного решения, то есть при проектировании какого-либо транспортного средства все это должно будет приниматься во внимание.
Карманы-полости лопастей турбины 4 - однонаправленные, поэтому если придется проектировать, скажем, ж/д транспортное средство с использованием лобового воздушного потока для его движения в пространстве, то на каждом вагоне поезда нужно будет устанавливать по две ветротурбины (на двух концах вагона), карманы-полости лопастей которых будет обращены в противоположные стороны.
Всемирная ветроэнергетическая ассоциация (офис находится в г.Бонне, Германия) одной из своих основных задач деятельности считает пропаганду концепции: для эффективного использования возобновляемых (вечных) источников энергии необходимо их сочетание, то есть их комбинированное использование, то есть получение гибридных установок. Так и в случае с проектируемым транспортным средством, использующим энергию воздушного встречного потока: если ее будет не хватать в зарядке аккумуляторной батареи, то дополнительную энергию для его зарядки можно будет получить от полупроводниковых солнечных батарей, расположенных как на крыше, так и в удобных местах транспортного средства. Но это в редких случаях - энергии лобового воздушного потока будет достаточно!
Источники информации
1. Таблицы определения скорости ветров на суше и на море.
2. UA 17570 U, F03D 3/00, 16.10.2006.
3. «Катера и яхты», 1964, № 2.
4. «Катера и яхты», 1965, № 5.
Класс F03D9/00 Приспосабливание ветряных двигателей для особых целей; агрегатирование ветряных двигателей с приводимыми ими устройствами (при преобладании отличительных признаков приводимых устройств см классы, к которым отнесены эти устройства)
система регулирования микроклимата поля - патент 2529725 (27.09.2014) | |
ветроэлектрогенератор индуктивного типа - патент 2528428 (20.09.2014) | |
ротор ветроэлектрогенератора - патент 2527821 (10.09.2014) | |
статор ветроэлектроагрегата - патент 2526237 (20.08.2014) | |
ветродвигатель с эффектом магнуса (варианты) - патент 2526127 (20.08.2014) | |
статор - патент 2523683 (20.07.2014) | |
статор ветроэлектроагрегата - патент 2523523 (20.07.2014) | |
ветроэлектрогенератор сегментного типа - патент 2523432 (20.07.2014) | |
ветровой водонагреватель - патент 2522743 (20.07.2014) | |
блочная ярусная и рядная ветровая электростанция - патент 2519539 (10.06.2014) |
Класс B60K16/00 Устройства или приспособления силовых установок, связанные с передачей энергии от природных источников, например солнца, ветра