система управления асинхронным двигателем

Классы МПК:H02P21/08 косвенное управление ориентацией поля, например вычисление фазового угла поля на основе выравнивания напряжения ротора путем сложения частоты скольжения и частоты, пропорциональной числу оборотов
H02P21/13 управление путем наблюдения, например с использованием наблюдателей Луенбергера или фильтров Калмана
H02P23/08 управление на основе частоты скольжения, например сложение частоты скольжения и частоты, пропорциональной числу оборотов
H02P27/06 с использованием преобразователей постоянного тока в переменный или инверторов
Автор(ы):, , ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" (RU)
Приоритеты:
подача заявки:
2008-12-01
публикация патента:

Изобретение относится к области электротехники и может быть использовано для управления асинхронным двигателем. Техническим результатом является расширение функциональных возможностей системы и увеличение ресурса работы асинхронного двигателя за счет минимизации потерь электроэнергии в электроприводе при оптимальном скольжении во всем диапазоне частоты вращения ротора. В системе управления преобразователя частоты реализован оптимальный закон управления по минимуму суммарных потерь электропривода для ограничения его нагрева и расширения области допустимых по нагреву моментов нагрузки за счет учета оптимального скольжения при расчете ошибки тока при заданных значениях частоты вращения и момента нагрузки. 2 ил. система управления асинхронным двигателем, патент № 2390091

система управления асинхронным двигателем, патент № 2390091 система управления асинхронным двигателем, патент № 2390091

Формула изобретения

Система управления асинхронным двигателем, состоящая из блока ввода заданной частоты вращения асинхронного двигателя, блока рассогласования, регулятора напряжения, блока драйверов, автономного инвертора напряжения, датчика текущей частоты вращения асинхронного двигателя, блока вычисления синхронной частоты вращения асинхронного двигателя, отличающаяся тем, что дополнительно введены блок выбора оптимального скольжения, блок расчета оптимального потокосцепления, блок расчета оптимального значения вектора тока статора, блок вычисления токовой ошибки, блок выбора вектора напряжения, наблюдатель состояния, включающий в себя блок вычисления электрической частоты вращения ротора, блок вычисления текущего вектора тока статора и блок расчета конструктивных параметров, причем выход блока ввода заданной частоты вращения асинхронного двигателя соединен с первым входом блока рассогласования, первым входом блока выбора оптимального скольжения и первым входом блока вычисления синхронной частоты вращения асинхронного двигателя, причем второй вход блока рассогласования подключен к первому выходу наблюдателя состояния, являющемуся выходом блока вычисления электрической частоты вращения ротора, выход блока рассогласования подключен к входу регулятора напряжения, выход которого подключен ко второму входу блока выбора оптимального скольжения и к первому входу блока расчета оптимального потокосцепления, второй вход которого соединен с выходом блока выбора оптимального скольжения, а третий вход подключен к третьему выходу наблюдателя состояния, являющемуся выходом блока расчета конструктивных параметров, который, кроме того, подключен ко второму входу блока расчета оптимального значения вектора тока статора, первый вход которого соединен с выходом блока расчета оптимального потокосцепления, выход блока расчета оптимального значения вектора тока статора подключен к первому входу блока вычисления токовой ошибки, второй вход которого соединен со вторым выходом наблюдателя состояния, являющимся выходом блока вычисления текущего вектора тока статора, а выход блока вычисления токовой ошибки подключен к первому входу блока выбора вектора напряжения, кроме того, выход блока выбора оптимального скольжения подключен ко второму входу вычисления синхронной частоты вращения асинхронного двигателя, а его выход соединен со вторым входом блока выбора вектора напряжения, выходы которого подключены ко входам блока драйверов, выходы которых соединены с управляющими входами автономного инвертора напряжения, выходы которого соединены с обмотками асинхронного двигателя, а также с первым входом наблюдателя состояния, являющимся входом блока вычисления текущего вектора тока статора, асинхронный двигатель соединен с датчиком текущей частоты вращения асинхронного двигателя, выход которого подключен ко второму входу наблюдателя состояния, являющемуся входом блока вычисления электрической частоты вращения ротора.

Описание изобретения к патенту

Изобретение относится к электротехнике и может быть использовано для управления асинхронным двигателем.

В большинстве современных электроприводов для управления током статора двигателя используется принцип векторной широтно-импульсной модуляции (ШИМ) (Брасловский И.Я. Энергосберегающий асинхронный электропривод: Учеб. пособие для студ. высш. учеб. заведений. - М.: Академия, 2004, стр.40).

Главный недостаток данного принципа заключается в том, что для получения малых гармонических искажений тока необходимо повышать тактовую частоту ШИМ, что приводит к увеличению динамических потерь в ключах инвертора. Кроме того, принцип ШИМ не позволяет полностью использовать напряжение источника питания, что ухудшает эффективность системы и ограничивает ее функциональные возможности.

Известен электропривод с системой управления (Виноградов А.Б., Чистосердов В.Л., Сибирцев А.Н., Монов Д.А. Новые серии цифровых асинхронных электроприводов на основе векторных принципов управления и формирования переменных. Электротехника. 2001, № 12, стр.26), состоящей из блока ввода и предварительной обработки сигналов, формирователя частоты, формирователя напряжения, модулятора, инвертора и асинхронного двигателя.

Недостатком аналога является сложная структура и ограниченный диапазон регулирования скорости до 50:1, не предъявляющий повышенных требований к динамическим характеристикам, что ограничивает функциональные возможности системы.

Наиболее близким к предлагаемому является система управления асинхронным двигателем, состоящая из блока ввода заданной частоты вращения асинхронного двигателя, блока рассогласования, регулятора напряжения, сумматора, блока драйверов, автономного инвертора напряжения, датчика текущей частоты вращения асинхронного двигателя, блока вычисления синхронной частоты вращения асинхронного двигателя.

Датчик текущей частоты вращения измеряет частоту вращения асинхронного двигателя f2, затем в блоке рассогласования вычисляется разность между заданной и текущей частотой вращения асинхронного двигателя, которую вводят в регулятор напряжения, в сумматоре вычисляется частота напряжения асинхронного двигателя, которая складывается из частоты вращения ротора асинхронного двигателя и его оптимального скольжения, изменяют частоту и величину напряжения на асинхронном двигателе в соответствии с требуемыми значениями (патент РФ № 2294050, МПК Н02Р 23/08, Н02Р 27/06. Опубл. 20.02.2007).

Недостатком известного устройства, выбранного в качестве прототипа, является сравнительно узкий диапазон управления по нагрузке, в особенности на низких (малых) скоростях вращения, в связи с тем, что выбранная авторами функциональная зависимость для определения напряжения статора асинхронного двигателя имеет место только при допущении, что значение сопротивления статора равно нулю R1=0, которое не выполняется для большинства асинхронных двигателей при значениях частоты вращения асинхронного двигателя f1<<f1ном, что ограничивает функциональные возможности системы.

Задача изобретения - расширение функциональных возможностей системы и увеличение ресурса работы асинхронного двигателя за счет минимизации потерь электроэнергии в электроприводе при оптимальном скольжении во всем диапазоне частоты вращения ротора.

Технический результат достигается тем, что в систему управления асинхронным двигателем, состоящую из блока ввода заданной частоты вращения асинхронного двигателя, блока рассогласования, регулятора напряжения, блока драйверов, автономного инвертора напряжения, датчика текущей частоты вращения асинхронного двигателя, блока вычисления синхронной частоты вращения асинхронного двигателя, в отличие от прототипа дополнительно введены блок выбора оптимального скольжения, блок расчета оптимального потокосцепления, блок расчета оптимального значения вектора тока статора, блок вычисления токовой ошибки, блок выбора вектора напряжения, наблюдатель состояния, включающий в себя блок вычисления электрической частоты вращения ротора, блок вычисления текущего вектора тока статора и блок расчета конструктивных параметров, причем выход блока ввода заданной частоты вращения асинхронного двигателя соединен с первым входом блока рассогласования, первым входом блока выбора оптимального скольжения и первым входом блока вычисления синхронной частоты вращения асинхронного двигателя, причем второй вход блока рассогласования подключен к первому выходу наблюдателя состояния, являющемуся выходом блока вычисления электрической частоты вращения ротора, выход блока рассогласования подключен ко входу регулятора напряжения, выход которого подключен ко второму входу блока выбора оптимального скольжения и к первому входу блока расчета оптимального потокосцепления, второй вход которого соединен с выходом блока выбора оптимального скольжения, а третий вход подключен к третьему выходу наблюдателя состояния, являющемуся выходом блока расчета конструктивных параметров, который, кроме того, подключен ко второму входу блока расчета оптимального значения вектора тока статора, первый вход которого соединен с выходом блока расчета оптимального потокосцепления, выход блока расчета оптимального значения вектора тока статора подключен к первому входу блока вычисления токовой ошибки, второй вход которого соединен со вторым выходом наблюдателя состояния, являющимся выходом блока вычисления текущего вектора тока статора, а выход блока вычисления токовой ошибки подключен к первому входу блока выбора вектора напряжения, кроме того, выход блока выбора оптимального скольжения подключен ко второму входу вычисления синхронной частоты вращения асинхронного двигателя, а его выход соединен со вторым входом блока выбора вектора напряжения, выходы которого подключены ко входам блока драйверов, выходы которых соединены с управляющими входами автономного инвертора напряжения, выходы которого соединены с обмотками асинхронного двигателя, а также с первым входом наблюдателя состояния, являющимся входом блока вычисления текущего вектора тока статора, асинхронный двигатель соединен с датчиком текущей частоты вращения асинхронного двигателя, выход которого подключен ко второму входу наблюдателя состояния, являющемуся входом блока вычисления электрической частоты вращения ротора.

В процессе работы при изменении скоростного диапазона и изменении характера и величины нагрузки в отличие от прототипа определяют оптимальное скольжение по зависимостям, учитывающим минимум суммарных потерь мощности асинхронного двигателя и оптимальное потокосцепление ротора для расчета оптимального значения вектора тока статора, который сравнивается с текущим вектором тока статора, по величине вычисленной ошибки тока определяют величину напряжения инвертора и соответствующую ей комбинацию включения силовых ключей.

Сущность заявляемого изобретения поясняется чертежами. На фиг.1 показана функциональная схема системы управления асинхронным двигателем. На фиг.2 показана зависимость оптимального скольжения от момента и частоты вращения.

Система управления асинхронным двигателем, состоящая из блока ввода заданной частоты вращения асинхронного двигателя 1, блока рассогласования 2, регулятора напряжения 3, блока драйверов 4, автономного инвертора напряжения 5, датчика текущей частоты вращения асинхронного двигателя 6, блока вычисления синхронной частоты вращения асинхронного двигателя 7, отличается тем, что дополнительно введены блок выбора оптимального скольжения 8, блок расчета оптимального потокосцепления 9, блок расчета оптимального значения вектора тока статора 10, блок вычисления токовой ошибки 11, блок выбора вектора напряжения 12, наблюдатель состояния 13, включающий в себя блок вычисления электрической частоты вращения ротора 14, блок вычисления текущего вектора тока статора 15 и блок расчета конструктивных параметров 16, причем выход блока ввода заданной частоты вращения асинхронного двигателя соединен с первым входом блока рассогласования 2, первым входом блока выбора оптимального скольжения 8 и первым входом блока вычисления синхронной частоты вращения асинхронного двигателя 7, причем второй вход блока рассогласования 2 подключен к первому выходу наблюдателя состояния 13, являющемуся выходом блока вычисления электрической частоты вращения ротора 14, выход блока рассогласования 2 подключен ко входу регулятора напряжения 3, выход которого подключен ко второму входу блока выбора оптимального скольжения 8 и к первому входу блока расчета оптимального потокосцепления 9, второй вход которого соединен с выходом блока выбора оптимального скольжения 8, а третий вход подключен к третьему выходу наблюдателя состояния 13, являющемуся выходом блока расчета конструктивных параметров 16, который, кроме того, подключен ко второму входу блока расчета оптимального значения вектора тока статора 10, первый вход которого соединен с выходом блока расчета оптимального потокосцепления 9, выход блока расчета оптимального значения вектора тока статора 10 подключен к первому входу блока вычисления токовой ошибки 11, второй вход которого соединен со вторым выходом наблюдателя состояния 13, являющимся выходом блока вычисления текущего вектора тока статора 15, а выход блока вычисления токовой ошибки 11 подключен к первому входу блока выбора вектора напряжения 12, кроме того, выход блока выбора оптимального скольжения 8 подключен ко второму входу блока вычисления синхронной частоты вращения асинхронного двигателя 7, а его выход соединен со вторым входом блока выбора вектора напряжения 12, выходы которого подключены ко входам блока драйверов 4, выходы которых соединены с управляющими входами автономного инвертора напряжения 5, выходы которого соединены с обмотками асинхронного двигателя, а также с первым входом наблюдателя состояния 13, являющимся входом блока вычисления текущего вектора тока статора 15, асинхронный двигатель соединен с датчиком текущей частоты вращения асинхронного двигателя 6, выход которого подключен ко второму входу наблюдателя состояния 13, являющемуся входом блока вычисления электрической частоты вращения ротора 14.

Система управления асинхронным двигателем работает следующим образом: задаются основные параметры электропривода:

R1, R2 - активные сопротивления обмоток статора и ротора двигателя;

L0 - индуктивность намагничивающего контура;

Llсистема управления асинхронным двигателем, патент № 2390091 , L2система управления асинхронным двигателем, патент № 2390091 - индуктивности рассеяния обмоток статора и ротора двигателя;

Рn - число пар полюсов двигателя;

f1ном - номинальная частота питающего напряжения;

система управления асинхронным двигателем, патент № 2390091 1ном=2система управления асинхронным двигателем, патент № 2390091 ·fном;

система управления асинхронным двигателем, патент № 2390091 ном - номинальная частота вращения двигателя;

система управления асинхронным двигателем, патент № 2390091 - номинальное скольжение двигателя.

С блока ввода заданной частоты вращения асинхронный двигатель 1 вводится сигнал, пропорциональный относительной частоте вращения система управления асинхронным двигателем, патент № 2390091

С блока рассогласования 2 снимается сигнал, пропорциональный разности заданной частоты вращения и сигнала обратной связи с блока 14 вычисления электрической частоты вращения ротора система управления асинхронным двигателем, патент № 2390091 2э'. Согласно разности сигналов регулятор напряжения 3 выдает сигнал, пропорциональный моменту Мзад' . В постоянной памяти блока выбора оптимального скольжения заложена зависимость оптимального скольжения система управления асинхронным двигателем, патент № 2390091 опт=f(Mсистема управления асинхронным двигателем, патент № 2390091 ,система управления асинхронным двигателем, патент № 2390091 система управления асинхронным двигателем, патент № 2390091 ), отражающая график на фиг 2. (Брасловский И.Я. Энергосберегающий асинхронный электропривод: Учеб. пособие для студ. высш. учеб. заведений. - М.: Академия, 2004, стр.96, рис.3.25, а).

При изменении заданной частоты вращения система управления асинхронным двигателем, патент № 2390091 задсистема управления асинхронным двигателем, патент № 2390091 ' и соответствующего ей момента Мзад система управления асинхронным двигателем, патент № 2390091 ' с блока выбора оптимального скольжения 8 снимается сигнал нового оптимального скольжения, обеспечивающего оптимальный режим работы электропривода по минимуму потерь.

На основании введенных из блока расчета конструктивных параметров 16, данных и поступивших значений Мзадсистема управления асинхронным двигателем, патент № 2390091 ' и система управления асинхронным двигателем, патент № 2390091 опт в блоке расчета оптимального потокосцепления 9 вычисляется величина оптимального потокосцепления система управления асинхронным двигателем, патент № 2390091 оптсистема управления асинхронным двигателем, патент № 2390091 ' по формуле:

система управления асинхронным двигателем, патент № 2390091

Далее, с учетом введенных из блока расчета конструктивных параметров 16 данных и поступивших значений система управления асинхронным двигателем, патент № 2390091 оптсистема управления асинхронным двигателем, патент № 2390091 ' и система управления асинхронным двигателем, патент № 2390091 опт, в блоке расчета оптимального значения вектора тока статора 10 рассчитывается величина вектора тока статора по формуле:

система управления асинхронным двигателем, патент № 2390091

Формулы для расчета система управления асинхронным двигателем, патент № 2390091 оптсистема управления асинхронным двигателем, патент № 2390091 ' и i1оптсистема управления асинхронным двигателем, патент № 2390091 показывают их зависимость о система управления асинхронным двигателем, патент № 2390091 опт и Мзадсистема управления асинхронным двигателем, патент № 2390091 ', что подтверждает принцип оптимального управления по минимуму суммарных потерь (Брасловский И.Я. Энергосберегающий асинхронный электропривод: Учеб. пособие для студ. высш. учеб. заведений. - М.: Академия, 2004 стр.101, ф.3.60).

Рассчитанное значение вектора тока обмотки статора Is подается в блок вычисления токовой ошибки 11, на второй вход которого со второго выхода наблюдателя состояния 13, являющегося выходом блока вычисления текущего вектора тока статора 15 подается значение текущего вектора тока статора. На выходе формируется вектор токовой ошибки, который подается в блок вычисления вектора напряжения 12, сигнал с которого подается на драйвера автономного инвертора напряжения 4, соединенные с управляющими входами автономного инвертора напряжения 5, в результате чего автономный инвертор подает напряжение на обмотки статора асинхронного двигателя, соответствующее полученной токовой ошибки, т.е. учитывающее заданную частоту вращения система управления асинхронным двигателем, патент № 2390091 задсистема управления асинхронным двигателем, патент № 2390091 ' и соответствующий ей момент Мзад система управления асинхронным двигателем, патент № 2390091 '.

Таким образом, предлагаемая система управления асинхронным двигателем позволяет реализовать оптимальный закон управления по минимуму суммарных потерь с учетом оптимального скольжения электропривода для ограничения его нагрева и расширения области, допустимых по нагреву моментов нагрузки за счет учета оптимального скольжения при расчете ошибки тока при заданных значениях частоты вращения и момента нагрузки.

Класс H02P21/08 косвенное управление ориентацией поля, например вычисление фазового угла поля на основе выравнивания напряжения ротора путем сложения частоты скольжения и частоты, пропорциональной числу оборотов

энергосберегающая система управления асинхронным электроприводом -  патент 2498496 (10.11.2013)
управление и/или регулирование трехфазного преобразователя электроэнергии для управления работой асинхронной машины -  патент 2455751 (10.07.2012)
способ оптимального векторного управления асинхронным двигателем -  патент 2402147 (20.10.2010)

Класс H02P21/13 управление путем наблюдения, например с использованием наблюдателей Луенбергера или фильтров Калмана

Класс H02P23/08 управление на основе частоты скольжения, например сложение частоты скольжения и частоты, пропорциональной числу оборотов

Класс H02P27/06 с использованием преобразователей постоянного тока в переменный или инверторов

Наверх