устройство для определения исправности тормозной системы транспортного средства
Классы МПК: | B60T17/22 устройства для контроля и испытания тормозных систем; сигнальные устройства G01L5/28 для испытания тормозов |
Патентообладатель(и): | Ефанов Василий Васильевич (RU) |
Приоритеты: |
подача заявки:
2008-12-01 публикация патента:
27.05.2010 |
Изобретение относится к измерительной технике и может быть использовано для проверки исправности тормозной системы транспортных средств. Устройство содержит блок предупреждения опрокидывания транспортного средства, вычислитель. Блок предупреждения опрокидывания транспортного средства содержит элемент ИЛИ, ключ, первую, вторую, третью схемы сравнения, задатчик постоянной величины, генератор импульсов, элемент И, элемент И-НЕ, дифференцирующую цепь, счетчик, индикатор прогнозируемого времени до опрокидывания транспортного средства, индикатор предельных значений поперечных ускорений. Выход элемента ИЛИ соединен с первым входом ключа, выход которого соединен с первыми входами первой, второй и третьей схем сравнения, вторые входы которых соединены соответственно с первым, вторым и третьим выходами задатчика постоянной величины, а выходы соединены соответственно с первым входом элемента И и одновременно с входом дифференцирующей цепи, входом элемента И-НЕ, входом индикатора предельных значений поперечных ускорений. На второй вход элемента И поступает сигнал через элемент И-НЕ. Третий вход элемента И соединен с выходом генератора импульсов. Выход элемента И соединен с первым входом счетчика, второй вход которого соединен с выходом дифференцирующей цепи. Выход счетчика соединен с входом индикатора прогнозируемого времени до опрокидывания транспортного средства. Техническим результатом является возможность прогнозирования времени до опрокидывания транспортного средства. 5 ил.
Формула изобретения
Устройство для определения исправности тормозной системы транспортного средства содержит электроконтактный датчик, вычислитель, индикатор направления перегрузки, индикатор величины перегрузки, блок обработки информации и индикатор превышения уровня перегрузки, при этом электроконтактный датчик состоит из немагнитного конусообразного корпуса с крышкой, размещенной в вершине корпуса, инерционного элемента, выполненного в виде электропроводного шарика, первого электроконтакта, выполненного в виде усеченного полого конуса, закрепленного на крышке корпуса, второго электроконтакта, выполненного в виде полого конуса, размещенного на боковой поверхности корпуса так, что его основание обращено к нижнему основанию усеченного конуса первого электроконтакта и параллельно ему, изолированных между собой центрального и кольцевого электроконтактов, центральный электроконтакт размещен в вершине конуса второго электроконтакта и изолирован от него, кольцевой электроконтакт размещен по периметру вершины конуса второго электроконтакта и изолирован от него, центральный, второй электроконтакты и вход кнопки «Установка 0» соединены с положительным выводом источника питания, первый электроконтакт выполнен в виде изолированных друг от друга секторов, выводы которых образуют первую группу выходов датчика, вторым и третьим выходами которого являются соответственно выход кнопки «Установка 0» и вывод кольцевого электроконтакта, первая группа входов, второй и третий входы вычислителя соединены соответственно с первой группой выходов, вторым и третьим выходами электроконтактного датчика, первая группа выходов вычислителя соединена с группой входов индикатора направления перегрузки, второй выход - с входом индикатора величины перегрузки, вычислитель содержит группу из n-триггеров, где n - число секторов первого электроконтакта электроконтактного датчика, первый, второй и третий элементы И, инвертор, генератор импульсов, дифференцирующую цепь, счетчик импульсов, умножитель, делитель, задатчик постоянной величины, причем информационные входы триггеров соединены с соответствующими входами первой группы входов вычислителя, второй вход которого соединен с входами обнуления триггеров и счетчика импульсов, третий вход через инвертор соединен с входом дифференцирующей цепи и первым входом второго элемента И, второй вход которого соединен с выходом генератора импульсов, а выход второго элемента И соединен с информационным входом счетчика импульсов, прямые выходы триггеров являются соответствующими выходами первой группы выходов вычислителя, а инверсные выходы соединены с соответствующими входами группы из n-входов первого элемента И, выход которого соединен с третьим входом второго элемента И и вторым входом третьего элемента И, первый вход которого соединен с выходом дифференцирующей цепи, а выход третьего элемента И соединен с входом обнуления счетчика импульсов, выход которого соединен с первым и вторым входами умножителя, выход которого соединен с первым входом делителя, второй вход которого соединен с выходом задатчика постоянной величины, а выход является вторым выходом вычислителя, блок обработки информации состоит из n первых, n вторых пороговых устройств, n ключей, элемента ИЛИ и задатчика постоянных сигналов, причем второй выход вычислителя соединен соответственно с первым входом блока обработки информации, второй вход которого соединен с выходом датчика скорости движения транспортного средства, а выход блока обработки информации соединен с индикатором уровня перегрузки, первый и второй входы блока обработки информации соединены соответственно со вторыми входами n вторых и первыми входами n первых пороговых устройств, выходы n первых пороговых устройств соединены с первыми входами n ключей, первые и вторые выходы задатчика постоянных сигналов соединены соответственно со вторыми входами n первых пороговых устройств и вторыми входами n ключей, выходы которых через первые входы n вторых пороговых устройств соединены с n входами элемента ИЛИ, выход которого является выходом блока обработки информации, отличающееся тем, что имеет блок предупреждения опрокидывания транспортного средства, первый, второй и третьи входы которого соединены с соответствующими выходами первой группы выходов и вторым выходом вычислителя, блок предупреждения опрокидывания транспортного средства, содержит элемент ИЛИ, ключ, первую, вторую, третью схемы сравнения, задатчик постоянной величины, генератор импульсов, элемент И, элемент И-НЕ, дифференцирующую цепь, счетчик, индикатор прогнозируемого времени до опрокидывания транспортного средства, индикатор предельных значений поперечных ускорений, причем первый, второй и третий входы блока предупреждения опрокидывания транспортного средства являются соответственно первым и вторыми входами элемента ИЛИ, вторым входом ключа, выход элемента ИЛИ соединен с первым входом ключа, выход которого соединен с первыми входами первой, второй и третьей схемы сравнения, вторые входы которых соединены соответственно с первым, вторым и третьим выходами задатчика постоянной величины, а выходы соединены соответственно с первым входом элемента И и одновременно с входом дифференцирующей цепи, входом элемента И-НЕ, входом индикатора предельных значений поперечных ускорений, кроме того на второй вход элемента И поступает сигнал через элемент И-НЕ, а третий вход элемента И соединен соответственно с выходом генератора импульсов, выход элемента И соединен с первым входом счетчика, второй вход которого соединен с выходом дифференцирующей цепи, выход счетчика соединен с входом индикатора прогнозируемого времени до опрокидывания транспортного средства.
Описание изобретения к патенту
Изобретение относится к измерительной технике и может быть использовано в системах автоматики и сигнализации, а также для проверки исправности тормозной системы транспортных средств и предупреждения их опрокидывания.
Известно устройство для определения исправности тормозной системы транспортного средства, содержащее электроконтактный датчик, вычислитель, индикатор направления перегрузки, индикатор величины перегрузки, блок обработки информации и индикатор превышения уровня перегрузки, при этом электроконтактный датчик состоит из немагнитного конусообразного корпуса с крышкой, размещенной в вершине корпуса, инерционного элемента, выполненного в виде электропроводного шарика, первого электроконтакта, выполненного в виде усеченного полого конуса, закрепленного на крышке корпуса, второго электроконтакта, выполненного в виде полого конуса, размещенного по боковой поверхности корпуса так, что его основание обращено к нижнему основанию усеченного конуса первого электроконтакта и параллельно ему, изолированных между собой центрального и кольцевого электроконтактов, центральный электроконтакт размещен в вершине конуса второго электроконтакта и изолирован от него, кольцевой электроконтакт размещен по периметру вершины конуса второго электроконтакта и изолирован от него, первый электроконтакт выполнен в виде изолированных друг от друга секторов, выводы которых образуют первую группу выходов датчика, вторым выходом которого является вывод кольцевого электроконтакта, центральный и второй электроконтакты соединены с положительным выводом источника питания, первая группа входов и второй вход вычислителя соединены соответственно с первой группой выходов и вторым выходом датчика, первая группа выходов вычислителя соединена с группой входов индикатора направления перегрузки, второй выход - с входом индикатора величины перегрузки, вычислитель содержит группу из n триггеров, где n - число секторов первого электроконтакта электроконтактного датчика, первый, второй и третий элементы И, инвертор, генератор импульсов, дифференцирующую цепь, счетчик импульсов, умножитель, делитель, задатчик постоянной величины, причем информационные входы триггеров соединены с соответствующими входами первой группы входов вычислителя, второй вход которого через инвертор соединен с входом дифференцирующей цепи и первым входом второго элемента И, второй вход которого соединен с выходом генератора импульсов, а выход второго элемента И соединен с информационным входом счетчика импульсов, входы обнуления триггеров и счетчика импульсов объединены с обеспечением возможности подачи на них сигнала с плюсовой шины источника питания, прямые выходы триггеров являются соответствующими выходами первой группы выходов вычислителя, а инверсные выходы соединены с соответствующими входами группы из n входов первого элемента ИЛИ, выход которого соединен с третьим входом второго элемента И и вторым входом третьего элемента И, первый вход которого соединен с выходом дифференцирующей цепи, а выход третьего элемента И соединен с входом обнуления счетчика импульсов, выход которого соединен с первым и вторым входами умножителя, выход которого соединен с первым входом делителя, второй вход которого соединен с выходом задатчика постоянной величины, а выход является вторым выходом вычислителя, блок обработки информации состоит из n первых, n вторых пороговых устройств, n ключей, элемента ИЛИ и задатчика постоянных сигналов, причем второй выход вычислителя соединен соответственно с первым входом блока обработки информации, второй вход которого соединен с выходом датчика скорости движения транспортного средства, а выход блока обработки информации соединен с индикатором уровня перегрузки, первый и второй входы блока обработки информации соединены соответственно со вторыми входами n вторых и первыми входами n первых пороговых устройств, выходы n первых пороговых устройств соединены с первыми входами n ключей, первые и вторые выходы задатчика постоянных сигналов соединены соответственно со вторыми входами n первых пороговых устройств и вторыми входами n ключей, выходы которых через первые входы n вторых пороговых устройств соединены с n входами элемента ИЛИ, выход которого является выходом блока обработки информации (патент РФ № 2279645, М. кл. G01H 11/06, от 15.09.2004 г., опубл. 10.07.2006, бюл. № 19).
Недостатками данного устройства являются заниженные информационные возможности из-за отсутствия возможности прогнозирования времени до опрокидывания транспортного средства на основе анализа динамики изменения боковой перегрузки при повороте транспортного средства, а также отсутствия сигнализации при достижении предельных значений боковых ускорений.
Технической задачей изобретения является повышение информативности.
Сущность предлагаемого изобретения заключается в том, что устройство для определения исправности тормозной системы транспортного средства, содержащее электроконтактный датчик, вычислитель, индикатор направления перегрузки, индикатор величины перегрузки, блок обработки информации и индикатор превышения уровня перегрузки, при этом электроконтактный датчик состоит из немагнитного конусообразного корпуса с крышкой, размещенной в вершине корпуса, инерционного элемента, выполненного в виде электропроводного шарика, первого электроконтакта, выполненного в виде усеченного полого конуса, закрепленного на крышке корпуса, второго электроконтакта, выполненного в виде полого конуса, размещенного на боковой поверхности корпуса так, что его основание обращено к нижнему основанию усеченного конуса первого электроконтакта и параллельно ему, изолированных между собой центрального и кольцевого электроконтактов, центральный электроконтакт размещен в вершине конуса второго электроконтакта и изолирован от него, кольцевой электроконтакт размещен по периметру вершины конуса второго электроконтакта и изолирован от него, центральный, второй электроконтакты и вход «Установки 0» соединены с положительным выводом источника питания, первый электроконтакт выполнен в виде изолированных друг от друга секторов, выводы которых образуют первую группу выходов датчика, вторым и третьим выходами которого являются соответственно выход кнопки «Установка 0» и вывод кольцевого электроконтакта, первая группа входов, второй и третий входы вычислителя соединены соответственно с первой группой выходов, вторым и третьим выходами электроконтактного датчика, первая группа выходов вычислителя соединена с группой входов индикатора направления перегрузки, второй выход - с входом индикатора величины перегрузки, вычислитель содержит группу из n триггеров, где n - число секторов первого электроконтакта электроконтактного датчика, первый, второй и третий элементы И, инвертор, генератор импульсов, дифференцирующую цепь, счетчик импульсов, умножитель, делитель, задатчик постоянной величины, причем информационные входы триггеров соединены с соответствующими входами первой группы входов вычислителя, второй вход которого через инвертор соединен с входом дифференцирующей цепи и первым входом второго элемента И, второй вход которого соединен с выходом генератора импульсов, а выход второго элемента И соединен с информационным входом счетчика импульсов, входы обнуления триггеров и счетчика импульсов объединены с обеспечением возможности подачи на них сигнала с плюсовой шины источника питания, прямые выходы триггеров являются соответствующими выходами первой группы выходов вычислителя, а инверсные выходы соединены с соответствующими входами группы из n входов первого элемента И, выход которого соединен с третьим входом второго элемента И и вторым входом третьего элемента И, первый вход которого соединен с выходом дифференцирующей цепи, а выход третьего элемента И соединен с входом обнуления счетчика импульсов, выход которого соединен с первым и вторым входами умножителя, выход которого соединен с первым входом делителя, второй вход которого соединен с выходом задатчика постоянной величины, а выход является вторым выходом вычислителя, блок обработки информации состоит из n первых, n вторых пороговых устройств, n ключей, элемента ИЛИ и задатчика постоянных сигналов, причем второй выход вычислителя соединен соответственно с первым входом блока обработки информации, второй вход которого соединен с выходом датчика скорости движения транспортного средства, а выход блока обработки информации соединен с индикатором превышения уровня перегрузки, первый и второй входы блока обработки информации соединены соответственно со вторыми входами n вторых и первыми входами n первых пороговых устройств, выходы n первых пороговых устройств соединены с первыми входами n ключей, первые и вторые выходы задатчика постоянных сигналов соединены соответственно со вторыми входами n первых пороговых устройств и вторыми входами n ключей, выходы которых через первые входы n вторых пороговых устройств соединены с n входами элемента ИЛИ, выход которого является выходом блока обработки информации, дополнительно имеет блок предупреждения опрокидывания транспортного средства, первый, второй и третий входы которого соединены с соответствующими выходами первой группы выходов и вторым выходом вычислителя, при этом блок предупреждения опрокидывания транспортного средства содержит элемент ИЛИ, ключ, первую, вторую, третью схемы сравнения, задатчик постоянной величины, генератор импульсов, элемент И, элемент И-НЕ, дифференцирующую цепь, счетчик, индикатор прогнозируемого времени до опрокидывания транспортного средства, индикатор предельных значений поперечных ускорений, причем первый, второй и третий входы блока предупреждения опрокидывания транспортного средства являются соответственно первым, вторым входами элемента ИЛИ и вторым входом ключа, выход элемента ИЛИ соединен с первым входом ключа, выход которого соединен с первыми входами первой, второй и третьей схем сравнения, вторые входы которых соединены соответственно с первым, вторым и третьим выходами задатчика постоянной величины, а выходы соединены соответственно с первым входом элемента И и одновременно с входом дифференцирующей цепи, входом элемента И-НЕ, входом индикатора предельных значений поперечных ускорений, второй и третий входы элемента И соединены соответственно с выходом генератора импульсов, выходом дифференцирующей цепи, выход элемента И соединен с первым входом счетчика, второй вход которого соединен с выходом дифференцирующей цепи, выход счетчика соединен с входом индикатора прогнозируемого времени до опрокидывания транспортного средства.
На фиг.1 изображена конструктивная схема электроконтактного датчика, где 5 - немагнитный конусообразный корпус с крышкой 6; 7 - инерционный элемент; 8, 9, 10, 11 - электроконтакты. На фиг.2 - то же, план. На фиг.3 - структурная схема электрической части устройства для определения исправности тормозной системы транспортного средства, где 2 - вычислитель; 3 - индикатор направления перегрузки; 4 - индикатор величины перегрузки; 7 - инерционный элемент; 8, 9 - первый и второй электроконтакты; 10 - центральный электроконтакт; 11 - кольцевой электроконтакт; 12 - источник питания; 13 - триггер; 14, 15, 16 - первый, второй и третий элементы И; 17 - инвертор; 18 - генератор импульсов; 19 - дифференцирующая цепь; 20 - счетчик импульсов; 21 - умножитель; 22 - делитель; 23 - задатчик постоянной величины; 24 - блок обработки информации; 25 - индикатор превышения уровня перегрузки; 31 - блок предупреждения опрокидывания транспортного средства. На фиг.4 - блок обработки информации, где 26, 27 - n первых и вторых пороговых устройств; 28 - n ключей; 29 -элемент ИЛИ; 30 - задатчик сигналов. На фиг.5 - функциональная схема блока предупреждения опрокидывания транспортного средства, где 32 - элемент ИЛИ; 33 - ключ; 34 - первая, 35 - вторая, 36 - третья схемы сравнения, 37 - задатчик постоянной величины, 38 - генератор импульсов, 39 - элемент И, 40 - элемент И-НЕ, 41 - дифференцирующую цепь, 42 - счетчик, 43 - индикатор прогнозируемого времени до опрокидывания транспортного средства, 44 - индикатор предельных значений поперечных ускорений.
Устройство для определения исправности тормозной системы транспортного средства содержит электроконтактный датчик 1, вычислитель 2, индикатор 3 направления перегрузки, индикатор 4 величины перегрузки, блок 24 обработки информации и индикатор 25 превышения уровня перегрузки, блок 31 предупреждения опрокидывания транспортного средства.
Причем первая группа входов, второй и третий входы вычислителя 2 соединены соответственно с первой группой выходов, вторым и третьим выходами электроконтактного датчика 1, первая группа выходов вычислителя 2 соединена с группой входов индикатора 3 направления перегрузки, второй выход - с входом индикатора 4 величины перегрузки, кроме того, соответствующие выходы первой группы выходов вычислителя 2 соединены с первым и вторым входом блока 31 предупреждения опрокидывания транспортного средства, третий вход которого соединен со вторым выходом вычислителя 2.
Электроконтактный датчик 1 состоит из немагнитного конусообразного корпуса 5 с крышкой 6, размещенной в вершине корпуса, инерционного элемента 7, выполненного в виде электропроводного шарика, первого 8 электроконтакта, выполненного в виде усеченного полого конуса, закрепленного на крышке корпуса 5, второго 9 электроконтакта, выполненного в виде полого конуса, размещенного на боковой поверхности корпуса 5 так, что его основание обращено к нижнему основанию усеченного конуса первого 8 электроконтакта и параллельно ему, изолированных между собой центрального 10 и кольцевого 11 электроконтактов, центральный 10 электроконтакт размещен в вершине конуса второго 9 электроконтакта и изолирован от него, кольцевой 11 электроконтакт размещен по периметру вершины конуса второго 9 электроконтакта и изолирован от него, центральный 10, второй 9 электроконтакты и кнопка «Установка 0» соединены с положительным выводом источника 12 питания, первый 8 электроконтакт выполнен в виде изолированных друг от друга секторов, выводы которых образуют первую группу выходов электроконтатного датчика 1, вторым и третьим выходами которого является выход от кнопки « Установка 0» и вывод кольцевого 11 электроконтакта.
Вычислитель 2 содержит группу из n триггеров 13, где n - число секторов первого 8 электроконтакта электроконтактного датчика 1, первый 14, второй 15 и третий 16 элементы И, инвертор 17, генератор 18 импульсов, дифференцирующую цепь 19, счетчик 20 импульсов, умножитель 21, делитель 22, задатчик 23 постоянной величины.
Причем информационные входы триггеров 13 соединены с соответствующими входами первой группы входов вычислителя 2, второй вход которого соединен с входами обнуления триггеров 13 и счетчика 20, третий вход которого через инвертор 17 соединен с входом дифференцирующей цепи 19 и первым входом второго 15 элемента И, второй вход которого соединен с выходом генератора 18 импульсов, а выход второго 15 элемента И соединен с информационным входом счетчика 20 импульсов, прямые выходы триггеров 13 являются соответствующими выходами первой группы выходов вычислителя 2, а инверсные выходы соединены с соответствующими входами группы из n входов первого 14 элемента И, выход которого соединен с третьим входом второго 15 элемента И и вторым входом третьего 16 элемента И, первый вход которого соединен с выходом дифференцирующей цепи 19, а выход третьего 16 элемента И соединен с входом обнуления счетчика 20 импульсов, выход которого соединен с первым и вторым входами умножителя 21, выход которого соединен с первым входом делителя 22, второй вход которого соединен с выходом первого 23 задатчика постоянной величины, а выход является вторым выходом вычислителя 2.
Блок 24 обработки информации состоит из n первых 26, n вторых 27 пороговых устройств, n ключей 28, элемента 29 ИЛИ и задатчика постоянных сигналов 30. Причем второй выход вычислителя 2 соединен соответственно с первым входом блока 24 обработки информации, второй вход которого соединен с выходом датчика скорости движения транспортного средства, а выход блока 24 обработки информации соединен с индикатором уровня перегрузки, первый и второй входы блока 24 обработки информации соединены соответственно со вторыми входами n вторых 27 и первыми входами n первых 26 пороговых устройств, выходы n первых 26 пороговых устройств соединены с первыми входами n ключей 28, первые и вторые выходы второго 30 задатчика постоянных сигналов соединены соответственно со вторыми входами n первых 26 пороговых устройств и вторыми входами n ключей 28, выходы которых через первые входы n вторых 27 пороговых устройств соединены с n входами элемента 29 ИЛИ, выход которого является выходом блока 24 обработки информации.
Блок 31 предупреждения опрокидывания транспортного средства содержит элемент 32 ИЛИ, ключ 33, первую 34, вторую 35, третью 36 схемы сравнения, задатчик 37 постоянной величины, генератор 38 импульсов, элемент 39 И, элемент 40 И-НЕ, дифференцирующую цепь 41, счетчик 42, индикатор 43 прогнозируемого времени до опрокидывания транспортного средства, индикатор 44 предельных значений поперечных ускорений.
Причем первый, второй и третий входы блока 31 предупреждения опрокидывания транспортного средства являются соответственно первым и вторыми входами элемента 32 ИЛИ, вторым входом ключа 33, выход элемента 32 ИЛИ соединен с первым входом ключа 33, выход которого соединен с первыми входами первой 34, второй 35 и третьей 36 схем сравнения, вторые входы которых соединены соответственно с первым, вторым и третьим выходами задатчика 37 постоянной величины, а выходы соединены соответственно с первым входом элемента 39 И и одновременно с входом дифференцирующей цепи 41, входом элемента 40 И-НЕ, входом индикатора 44 предельных значений поперечных ускорений, второй и третий входы элемента 39 И соединены соответственно с выходом генератора 38 импульсов, выходом дифференцирующей цепи 41, выход элемента И соединен с первым входом счетчика 42, второй вход которого соединен с выходом дифференцирующей цепи 41, выход счетчика соединен с входом индикатора 43 прогнозируемого времени до опрокидывания транспортного средства.
Устройство для определения исправности тормозной системы транспортного средства функционирует следующим образом.
В исходном состоянии сигнал с положительной шины питания подается на входы обнуления счетчика 20 и группы из n триггеров 13, при этом с инверсных выходов триггеров 13 сигналы через первый 14 элемент И поступают на третий вход второго 15 элемента И. Под воздействием перегрузки энерционный элемент 7 в виде электропроводного шарика перемещается в направлении одного из секторов первого 8 электроконтакта, при этом происходит размыкание центрального 10 и кольцевого электроконтакта 11 (фиг.1 и 2), приводящее к снятию сигнала с выхода инвертора 17.
Сигнал с выхода инвертора 17 поступает на вход дифференцирующей цепи 19 и на первый вход второго 15 элемента И (фиг.3).
С выхода дифференцирующей цепи 19 сигнал через первый вход третьего 16 элемента И поступает на вход обнуления счетчика 20.
С выхода генератора 18 сигнал в виде импульсов поступает через второй вход второго 15 элемента И на первый вход счетчика 20.
В дальнейшем при движении электропроводного шарика 7 происходит замыкание второго 9 и одного из секторов первого 8 электроконтакта (фиг.2), при этом сигнал поступает на первый вход одного из n триггеров 13, с прямого выхода которого сигнал поступает на вход индикатора 3 направления перегрузки, а отсутствие сигнала с инверсного выхода триггера 13 приводит к прекращению подсчета импульсов счетчиком 20 через первый 14 и второй 15 элементы И.
С выхода счетчика 20 импульсов сигнал, соответствующий времени t; с, движения электропроводного шарика, поступает на первый и второй входы умножителя 21, с выхода которого сигнал, соответствующий выражению t; с, поступает на первый вход делителя 22, на второй вход которого с выхода задатчика 23 поступает сигнал, соответствующий величине 2Lcos /g; с2 (фиг.2).
С выхода делителя 22 сигнал, соответствующей величине n=2Lcos /gt2 поступает одновременно на вход индикатора 4 величины перегрузки, на первый вход блока обработки информации 24 и на третий вход блока 31 предупреждения опрокидывания.
Блок 24 обработки информации предназначен для определения исправности тормозной системы транспортного средства путем сравнения текущей величины перегрузки n с эталонными значениями с учетом начальных условий возникновения перегрузки (фиг.4).
С первой группы выходов второго 30 задатчика сигналы поступают на вторые входы первого 26 порогового устройства, на первые входы которого поступают сигналы, пропорциональные скорости движения транспортного средства. С выходов первых 27 пороговых устройств сигналы, соответствующие скорости движения транспортного средства, поступают на первые входы ключей 28, на вторые входы которых поступают сигналы, пропорциональные эталонным значениям перегрузки, со вторых выходов второго 30 задатчика сигналов.
С выходов n ключей 28 сигналы поступают на первые входы n вторых 27 пороговых устройств, на вторые входы которых поступает сигнал, пропорциональный текущей перегрузке nтек.
В случае превышения уровня текущей перегрузки заданных эталонных значений сигнал с выходов вторых 27 пороговых устройств через первый 29 элемент ИЛИ поступает на вход индикатора 25 превышения уровня перегрузки, тем самым, обеспечивая автоматическое определение исправности тормозной системы транспортного средства.
Таким образом, обеспечивается автоматическое определение исправности тормозной системы транспортного средства за счет сравнения текущей величины перегрузки с заданным эталонным значением с учетом начальных условий возникновения перегрузки.
Блок 31 предупреждения опрокидывания транспортного средства функционирует следующим образом.
При осуществлении поворота транспортного средства возникают боковые перегрузки, при этом сигнал с соответствующих первых выходов вычислителя 2 поступает через первый или второй входы блока 31 предупреждения опрокидывания транспортного средства на первый или второй входы элемента ИЛИ 32. Сигналом с выхода элемента ИЛИ 32 открывается ключ 33, что обеспечивает поступление сигнала со второго выхода вычислителя 2 соответствующего текущему значению боковой перегрузки на первые входы первой 34, второй 35 и третьей 36 схем сравнения, на вторые входы, которых поступают сигналы с первого, второго и третьего выходов задатчика 37 постоянной величины, соответствующие трем различным значениям боковой перегрузки (фиг.5).
Схемы сравнения (34, 35) обеспечивают анализ динамики изменения значений боковых перегрузок путем определения временного интервала, достижения текущих значений боковых перегрузок двух заданных значений. Уровень выходных сигналов задатчика 37 постоянных сигналов выбирают исходя из условия: уровень второго выходного сигнала в два раза больше первого выходного сигнала и уровень третьего выходного сигнала в два раза больше второго выходного сигнала. Выбор отношений заданных уровней сигналов позволяет определить прогнозируемое время до достижения предельного значения боковых перегрузок. На основе анализа динамики изменения значений боковых перегрузок относительно первого и второго заданных значений определяется прогнозируемое время до достижения предельного значения боковых перегрузок.
В случае превышении текущего значения боковой перегрузки первого заданного значения происходит формирование сигнала на выходе первой 34 схемы сравнения, который через дифференцирующую цепь 41 поступает на второй вход (вход обнуления) счетчика 42. Обнуление счетчика 42 обеспечивается дифференцирующей цепью 41 по переднему фронту поступающего сигнала с выхода первой 34 схемы сравнения.
Кроме того, сигнал с выхода первой 34 схемы сравнения поступает на первый вход элемента 39 И, на второй вход которого поступает сигнал через элемент 40 И-НЕ, обеспечивая тем самым поступление импульсов с выхода генератора 38 импульсов на третий вход счетчика 42. Счетчик 42 прекращает подсчет импульсов в момент превышения текущего значения боковой перегрузки второго заданного значения. В этом случае на выходе второй 35 схемы сравнения появляется сигнал, который обеспечивает снятия сигнала через элемент 40 И-НЕ со второго входа элемента 39 И.
Сигнал с выхода счетчика 42, соответствующий прогнозируемому времени, поступает на индикатор 43 прогнозируемого времени до опрокидывания транспортного средства.
Водитель транспортного средства на основе данной информации, для исключения возможности опрокидывания транспортного средства при его повороте, уменьшает скорость движения транспортного средства.
В случае превышения текущих значений боковой перегрузки третьего заданного значения с выхода третьей 36 схемы сравнения сигнал поступает на индикатор 44 предельных значений поперечных ускорений.
В дальнейшем при осуществлении повторного поворота под действием боковой перегрузки происходит срабатывания первой 34 схемы сравнения, с выхода которой сигнал поступает на вход обнуления счетчика 42, устанавливая его в исходное положение и обеспечивает новый цикл измерений.
Таким образом, обеспечивается повышение информативности за счет выдачи информации водителю о прогнозируемом времени до опрокидывания транспортного средства при его движении.
Класс B60T17/22 устройства для контроля и испытания тормозных систем; сигнальные устройства
Класс G01L5/28 для испытания тормозов